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Planted Clique

e Erdés-Rény random graph G ~ G(n,1/2) e Planted k-clique: G ~ G(n,1/2,k)
= max clique of size &~ 2logn = Go + Ky, where Gy ~ G(n,1/2)
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e Naive n°U°8™) algorithm: max clique in G' ~ G(n,1/2) of size (2 + o(1))logn
e Poly-time algorithm for &k = Q(y/n) [AKS9%]

e Otherwise believed to be hard: planted clique conjecture [FK03]
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= max clique of size =~ 2logn = Go + Ky, where Gy ~ G(n,1/2)

e Naive n°U°8™) algorithm: max clique in G' ~ G(n,1/2) of size (2 + o(1))logn
[AKS98]

e Poly-time algorithm for &k = Q(y/n)

e Otherwise believed to be hard: planted clique conjecture [FK03]

Goal

Prove the planted clique conjecture for bounded computational models.
search: G ~ G(n,1/2, k) find k-clique refutation: G ~ G(n, 1/2) prove no k-clique decision: G from G(n,1/2,k) or G(n,1/2)
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Our Results

Theorem (informal)

Algorithms based on unary linear programming require time nfilogn) o distinguish a graph
sampled from G(n,1/2) versus the planted distribution G(n,1/2,n'/190),
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Show result through proof complexity:
e Trace of algorithm is proof of output

e Show proofs based on unary linear programming need to be long
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Our Results

Theorem (informal)

Algorithms based on unary linear programming require time nfilogn) o distinguish a graph
sampled from G(n,1/2) versus the planted distribution G(n,1/2,n'/190),

Show result through proof complexity:
e Trace of algorithm is proof of output

e Show proofs based on unary linear programming need to be long
Boils down to a size lower bound in unary Sherali-Adams
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Context & Previous Results

Claim: “G ~ G(n,1/2) contains a clique of size k = n'/100"

Sum-of-Squares

Polynomial Calculus Sherali-Adams

Resolution Nullstellensatz

Tree-like Resolution ‘ ‘Nullstcll()nsatz, no duall
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Context & Previous Results

Claim: "G ~ G(n,1/2) contains a clique of size k = n

Why Sum-of-Squares?

e Optimal under Unique Games
Conjecture for many optimization
problems

e Captures best algos for clique
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Context & Previous Results

Claim: “G ~ G(n,1/2) contains a clique of size k = n'/100"

Sum-of-Squares

Results of similar flavor:

e Monotone & bounded depth circuits

Polynomial Calculus Sherali-Adams

[Rossman08,Rossman10]

e Resolution:

Resolution Unary Sherali-Adams

= non-tight lower bounds  [BISo7,Pang21]

= weak encoding [LPRT17,DGGM20]

Unary Nullstellensatz|

Regular Resolution | [ABdRLNR18]

k=100logn

e Degree lower bounds for SoS

[MPW15,. .. ,BHKKMP19,Pang21] | Tree-like Resolution | |Nullstcllcnsatz, no duall

[BGL13) [Mar08]

D n?1°81) size lower bounds
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Context & Previous Results

Claim: "G ~ G(n,1/2) contains a clique of size k =n

Why is progress so slow?
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Context & Previous Results

Claim: "G ~ G(n,1/2) contains a clique of size k = n

Why is progress so slow?

o We have basically one way to prove
size lower bounds: restrictions

= Usually gives size lower bounds
exp(€(degree lower bound))
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Context & Previous Results

Claim: “G ~ G(n,1/2) contains a clique of size k = n'/100"

Why is progress so slow?

o We have basically one way to prove
size lower bounds: restrictions

= Usually gives size lower bounds
exp(€(degree lower bound))

e O(logn) degree upper bound
o Want: n®(°e") size lower bound

e Seems to require new techniques. . .

Sum-of-Squares

Polynomial Calculus Sherali-Adams
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Unary Nullstellensatz|
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Clique Formula & unary Sherali-Adams
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Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique(G, k)
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Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique(G, k)

e [ sets of vertices V1,..., V) of n vertices each

e Boolean variables =, and z, for each vertex < x,, = 1 iff v in k-clique
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Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique(G, k)
e [ sets of vertices V1,..., V) of n vertices each

e Boolean variables =, and z, for each vertex < x,, = 1 iff v in k-clique

e Boolean axioms y(1 —y) =0

e Negation axioms 1 —y =y
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Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique(G, k)

e [ sets of vertices V1,..., V) of n vertices each

e Boolean variables =, and z, for each vertex < x,, = 1 iff v in k-clique

e Boolean axioms y(1 —y) =0 e Block axioms -, oy xy =1
e Negation axioms 1 —y =y e Edge axioms z,x, = 0 for {u,v} € E(G)

k= .
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clique(G, k) sat if and only if there is a k-clique with a single vertex per block
Kilian Risse (EPFL)

Clique Is Hard on Average for Unary Sherali-Adams 6/42



The Unary Sherali-Adams Proof System

e Boolean variables z1,...,2m,Z1,...,Tm

e Polynomial system P = {p; =0,...,p,, = 0} over R|z]
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The Unary Sherali-Adams Proof System

e Boolean variables z1,...,2m,Z1,...,Tm
e Polynomial system P = {p; =0,...,p,, = 0} over R|z]

e A unary Sherali-Adams refutation of P is a polynomial of the form

Z%‘PH- Z CA,BH%HJ_J]‘:—M
i€[m] A,BC[n] €A jeB
ca,B=>0

for integer M,ca g > 0 and ¢; € Z|x]
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The Unary Sherali-Adams Proof System

Boolean variables x1,...,Zm, Z1,...,Tm

Polynomial system P = {p; =0,...,p, = 0} over Rx]

A unary Sherali-Adams refutation of P is a polynomial of the form

Zqz‘pﬁ- Z CA,BH%HJ_J]‘:—M
i€[m] A,BC[n] €A jeB
ca,B=>0

for integer M,ca g > 0 and ¢; € Z|x]

The size of such a refutation is the sum of the magnitude of all coefficients
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Our Result (Formal)

e Let G(n,k,p) be distribution over k-partite graphs, partitions of size n, include edge
e = {u, v} with probability p iff u, v in distinct parts
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e Let G(n,k,p) be distribution over k-partite graphs, partitions of size n, include edge
e = {u, v} with probability p iff u, v in distinct parts
Theorem (Formal)
Let G ~ G(n,k,p) with p < 1/2 and denote by D the max clique size of G. Then, w.h.p.,

unary Sherali-Adams requires size n®P) to refute clique(G, n'/109).

Today: only p =1/2 and hence D ~ 2logn
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How to Lower Bound Magnitude of Coefficients

e Write LP to search for min size unary Sherali-Adams refutation of P
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e Lower bound size by duality: craft a d-pseudo-measure p for P which is linear,

= almost non-negative: for monomials m = [[; 4 @i [[;cp Z;
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= small on axioms: for all monomials m, axioms p € P

lu(m - p)| <6
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= almost non-negative: for monomials m = ], 4 = []
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= small on axioms: for all monomials m, axioms p € P
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Pseudo-Measure: Construction, Failed Attempt |

Goal

Construct a n~—21°8™)_pseudo-measure for clique(G, k), where G' ~ G(n, k,1/2) and k < n%!

linear operator 1 such that u(m) > —n =298 ™) and |u(m - p)| < n =218 7™) while u(1) &~ 1
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Pseudo-Measure: Construction, Failed Attempt |

Goal
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e Intuition: p(m) should be contribution of m towards contradiction

e Idea 1: Let pu(m) be the fraction of relevant assignments m rules out
= For tuple ¢ relevant assignment p; is pi(x,) =1 if v € t and 0 otherwise
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Pseudo-Measure: Construction, Failed Attempt Il

Goal

Construct a n~21°8")_pseudo-measure for clique(G, k), where G' ~ G(n,k,1/2) and k < n0!

linear operator 1 such that p(m) > —n =208 7) and |(m - p)| < n =218 7™) while u(1) &~ 1

e Idea 2: Let us associate a monomial m with a subset of Q(m)
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linear operator 1 such that p(m) > —n =208 7) and |(m - p)| < n =218 7™) while u(1) &~ 1

e Idea 2: Let us associate a monomial m with a subset of Q(m)
e Attempt 2: cliques in Q(m)

,UO _k Z 2 ]l{t is clique} (G)
teQ(m)
e In expectation over G ~ G(n, k,1/2) all satisfied:

k
* Ecluo(D] =17 Tyeom 202 Ealli s aiaue (G)] = 1
= non-neg & all axioms are 0

Problem: no k-cliques in the graph!
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Pseudo-Measure: Construction, Successful Attempt

Goal

Construct a n~21°8")_pseudo-measure for clique(G, k), where G' ~ G(n,k,1/2) and k < n0!

linear operator 1 such that u(m) > —n~20°87) and |u(m - p)| < n =218 7) while 4(1) &~ 1

e |dea 2: Let us associate a monomial m with a subset of Q(m)
e Attempt 2: cliques in Q(m)

,UO n* Z 2 l{t is clique}(G)
teQ(m)
e Tweak ug by Pseudo-Calibration to obtain a pseudo-measure: [BHKKMP13]
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Construct a n~21°8")_pseudo-measure for clique(G, k), where G' ~ G(n,k,1/2) and k < n0!

linear operator 1 such that u(m) > —n~20°87) and |u(m - p)| < n =218 7) while 4(1) &~ 1

e |dea 2: Let us associate a monomial m with a subset of Q(m)
e Attempt 2: cliques in Q(m)

,UO n* Z 2 l{t is clique}(G)
teQ(m)
e Tweak pg by Pseudo-Calibration to obtain a pseudo-measure:

= Choose measure i that satisfies required properties in expectation
= Write pp in Fourier basis and truncate to reduce variance
= Hope: all properties satisfied as everything concentrates around expected value

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams

[BHKKMP13]
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Fourier Characters

e Character x. for each potential edge e = {u, v}, i.e., if u,v in distinct blocks,

_J1  ifee E(G), and
xe(G) = {—1 if e ¢ B(G).

e For set E of potential edges we let x(G) = [[.cr Xe(G). In particular x4(G) = 1.

k
po(m) = n* Z 2(2)ﬂ{t is clique} (@)
teQ(m)
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Fourier Characters

e Character x. for each potential edge e = {u, v}, i.e., if u,v in distinct blocks,

1 ifee E(G), and

xe(G) = {—1 if e ¢ E(Q).

e For set E of potential edges we let x(G) = [[.cr Xe(G). In particular x3(G) = 1.

k
,u,o(m) = nik Z 2(2)]l{t is cquue}(G)
teQ(m)
v v Vs Vi
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Fourier Characters

e Character x. for each potential edge e = {u, v}, i.e., if u,v in distinct blocks,

1 ifee E(G), and

xe(G) = {—1 if e ¢ E(Q).

e For set E of potential edges we let x(G) = [[.cr Xe(G). In particular x3(G) = 1.

k
,u,o(m) = nik Z 2(2)]l{t is cquue}(G)
teQ(m)
=n" > > xel(@)
tEQ(m) Eg(;) V; % V: Vi
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Fourier Characters

e Character x. for each potential edge e = {u, v}, i.e., if u,v in distinct blocks,

1 ifee E(G), and

xe(G) = {—1 if e & E(G).

e For set E of potential edges we let x(G) = [[.cr Xe(G). In particular x3(G) = 1.

=n" > > x6(6)

teQ(m) BC(3)

i Vie
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Fourier Characters

e Character x. for each potential edge e = {u, v}, i.e., if u,v in distinct blocks,

1 ifee E(G), and

xe(G) = {—1 if e ¢ E(Q).

e For set E of potential edges we let x(G) = [[.cr Xe(G). In particular x3(G) = 1.

i : :
po(m) = n* Z 2<2)ﬂ{t is cquue}(G) H
teQ(m) '
=nF Z Z xe(G) 7 E :
tEQ(m) Eg(;) V; % V: Vi
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Fourier Characters

e Character x. for each potential edge e = {u, v}, i.e., if u,v in distinct blocks,

1 ifee E(G), and

xe(G) = {—1 if e & E(G).

e For set E of potential edges we let x(G) = [[.cr Xe(G). In particular x3(G) = 1.

e E(G
k
po(m) = n* Z 2(2)ﬂ{t is cquue}
teQ(m)
=n" > > xe(@)
teQ(m) BC(3) >
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Fourier Characters: Pattern Graphs

Convenient to identify edge sets that “look the same”

po(m)=n"" %" > xn(

G) T /—/’”’*/Z?:*ZZZ:’;'”'—\, .
- (;) I I I I I I I I
A v Vs Vi

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 17/42




Fourier Characters: Pattern Graphs

Convenient to identify edge sets that “look the same”

po(m)=n"" %" > xn(

G) T /—/’”’*/Z?:*ZZZ:’;'”'—\, .
N Eg(;) I[ I I I I I I I
A v Vs Vi

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 17/42
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Convenient to identify edge sets that “look the same”

po(m) =n""* Z Z ve(G)

teQ(m) BC(!) it
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Fourier Characters: Pattern Graphs

Convenient to identify edge sets that “look the same”

po(m) =n"" >" > xp(G)

teQ(m) pc(h)

.
.
®
.
.
.
.
.
.
.
.
.

Vi
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Fourier Characters: Pattern Graphs

Convenient to identify edge sets that “look the same”

po(m) =n"" >" > xp(G)

teQ(m) pc(h)

=n* Z Z X# () (G)

teQ(m) Hc(k)

Vi
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Fourier Characters: Pattern Graphs

Convenient to identify edge sets that “look the same”

po(m)=n"% > > xp(G)
+€Q(m) 5 (4)

=n* Z Z XH)(G)

teQ(m) Hc (%)
=n* Z Z XH) (G)
HC (%) teQ(m)
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Pseudo-Measure by Pseudo-Calibration

Goal

Construct a n~21°8™)_pseudo-measure for clique(G, k), where G' ~ G(n,k,1/2) and k < n®1

e Attempt 2: cliques in Q(m)

po(m) =n"" 3> > xuw(G)
HC (%) teQ(m)

e Tweak pg by Pseudo-Calibration to obtain a pseudo-measure:

= Choose measure i that satisfies required properties in expectation
= Write po in Fourier basis and truncate to reduce variance

= Hope: all properties satisfied as everything concentrates around expected value
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Pseudo-Measure by Pseudo-Calibration

Goal

Construct a n~21°8™)_pseudo-measure for clique(G, k), where G' ~ G(n,k,1/2) and k < n®1

e Attempt 2: cliques in Q(m)

po(m)=n"" 3 > xnw(G)
HC (%) teQ(m)
e Tweak ug by Pseudo-Calibration to obtain a pseudo-measure: [BHKKMP13]

= Choose measure i that satisfies required properties in expectation
= Write po in Fourier basis and truncate to reduce variance

= Hope: all properties satisfied as everything concentrates around expected value

Can truncation even ensure that p(1) ~ 17
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Pseudo-Measure by Pseudo-Calibration

Goal

Construct a n~21°8™)_pseudo-measure for clique(G, k), where G' ~ G(n,k,1/2) and k < n®1

e Attempt 2: cliques in Q(m)

po(m) =n"" 3> > xuw(G)
HC (%) teQ(m)

e Tweak ug by Pseudo-Calibration to obtain a pseudo-measure: [BHKKMP13]
= Choose measure i that satisfies required properties in expectation
= Write po in Fourier basis and truncate to reduce variance
= Hope: all properties satisfied as everything concentrates around expected value
Can truncation even ensure that p(1) ~ 17
Yes — only allow H = (J!
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Pseudo-Measure by Pseudo-Calibration

Goal

Construct a n~21°8™)_pseudo-measure for clique(G, k), where G' ~ G(n,k,1/2) and k < n®1

e Attempt 2: cliques in Q(m)

po(m) =n"" 3> > xuw(G)
HC (%) teQ(m)

e Tweak ug by Pseudo-Calibration to obtain a pseudo-measure: [BHKKMP13]
= Choose measure i that satisfies required properties in expectation
= Write po in Fourier basis and truncate to reduce variance
= Hope: all properties satisfied as everything concentrates around expected value
Can truncation even ensure that p(1) ~ 17
Yes — only allow H = ()! That was attempt 1...
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

Epg(l=n""" > > Eluw(@)xm)(G)]

mIrc(s) o
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mIrc(s) o

Epg(l=n""" > > Eluw(@)xm)(G)] I I\\

% V2 Vi
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

Epg(D)] =n"2* 3" > Elxnwn(G)xuw)(G)]

ne(s) o

Vi
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

E[pg(D] =n""% 3" > " Elxue (@) xuw)(G)] If r
HE(3) B
=n7" S {61 tyean) = e

HE(5)

Vi
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

Epg(D)] =n"2* 3" S Elxnwn(G)xuw)(G)] f

HE(h) B

=n72 3 {1ty ) = Uy ey}
Hc( )

— 2k Z [V(E(H))|+2(k—|V(E(H))])
HC(3)

HC(5)

% Va Vi
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

—
I t [ E
% V2 Vs

E(1)) = Y oV

HC(3)

Vi
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

E(1)) = Y oV
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

Epd(1)] = > o VED

HC (%) :
k
= Z n_l
=0 HC ’;) Vi Vs Vi
\V(E(H))|=i
i (F)a)
~1+ ;n . <Z>2 2
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

Epd(1)] = > o VED

HC(5) :
k
= Z n_l
=0 HC ’;) Vi Vs Vi
[V(E(H))|=i
i (F)20)
~1 . 2
k
~1+ Zexp(—i(logn —logk —1i))
i—1
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Pseudo-Calibration: 2" Moment Calculation

Let us analyze the 2"¢ moment of ig(1); recall that Eg[uo(1)] =1

Ed3(1)] = S n IVED) —

HE() ’
k
= Z n_l
i=0  pgc ’;) v v Ve
[V(E(H))|=i
i (F)a)
~ 1 . 2
k
~1+ Zexp(—z’(logn —logk —1i)) =1+n"2D if only sum H with
=1 [V(E(H))| < nlogn.
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Pseudo-Measure: Actual Definition

e Truncating po to obtain p guarantees p(1) ~ 1
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Pseudo-Measure: Actual Definition

e Truncating po to obtain p guarantees p(1) ~ 1

e Tension: ensure u remains basically non-negative and small on edge axioms
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Pseudo-Measure: Actual Definition

e Truncating po to obtain p guarantees p(1) ~ 1
e Tension: ensure u remains basically non-negative and small on edge axioms
e Careful choice of truncation by vertex cover:
—k
pm)=n"" 3" 3" xpu(G)

HC(%) t€Q(m)
ve(H)<d

where d = nlogn for n > 0 small
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Pseudo-Measure: Actual Definition

Truncating po to obtain p guarantees p(1) ~ 1

e Tension: ensure u remains basically non-negative and small on edge axioms

Careful choice of truncation by vertex cover:

pm)=n"" 3" > ygu(G)
HC(%) t€Q(m)
ve(H)<d

where d = nlogn for n > 0 small

Same calculation as on previous slide shows that (1) =1+ =M with high probability
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e Tension: ensure u remains basically non-negative and small on edge axioms

Careful choice of truncation by vertex cover:

pm)=n"" 3" > ygu(G)
HC(%) t€Q(m)
ve(H)<d

where d = nlogn for n > 0 small

Same calculation as on previous slide shows that (1) =1+ =M with high probability

e Remains to argue that
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Pseudo-Measure: Actual Definition

e Truncating po to obtain p guarantees p(1) ~ 1

e Tension: ensure u remains basically non-negative and small on edge axioms

Careful choice of truncation by vertex cover:

pm)=n"" 3" > ygu(G)
HC(%) t€Q(m)
ve(H)<d

where d = nlogn for n > 0 small

Same calculation as on previous slide shows that (1) =1+ =M with high probability

e Remains to argue that
= 4 is small on edge-axioms: lu(m - xyx,)| < n~=P0oen)
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Pseudo-Measure: Actual Definition

e Truncating po to obtain p guarantees p(1) ~ 1

e Tension: ensure u remains basically non-negative and small on edge axioms

Careful choice of truncation by vertex cover:

pm)=n"" 3" > ygu(G)
HC(%) t€Q(m)
ve(H)<d

where d = nlogn for n > 0 small

Same calculation as on previous slide shows that (1) =1+ =M with high probability

e Remains to argue that
= 4 is small on edge-axioms: lu(m - xyx,)| < n~=P0oen)
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= 1 is basically non-negative: p(m) > —n~?oen)
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Pseudo-Measure: Actual Definition

e Truncating po to obtain p guarantees p(1) ~ 1

e Tension: ensure u remains basically non-negative and small on edge axioms

Careful choice of truncation by vertex cover:

pm)=n"" 3" > ygu(G)
HC(%) t€Q(m)
ve(H)<d

where d = nlogn for n > 0 small

Same calculation as on previous slide shows that (1) =1+ =M with high probability

e Remains to argue that
= 4 is small on edge-axioms: lu(m - xyx,)| < n~=P0oen) now

<
= 1 is basically non-negative: p(m) > —n~?oen)
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Pseudo-Measure: Actual Definition

e Truncating po to obtain p guarantees p(1) ~ 1

e Tension: ensure u remains basically non-negative and small on edge axioms

Careful choice of truncation by vertex cover:

pm)=n"" 3" > ygu(G)
HC(%) t€Q(m)
ve(H)<d

where d = nlogn for n > 0 small

Same calculation as on previous slide shows that (1) =1+ =M with high probability

e Remains to argue that
= 4 is small on edge-axioms: lu(m - xyx,)| < n~=P0oen) now

<
=y is basically non-negative: p(m) > —n~?oen) maybe later. ..
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Edge Axioms

e m monomial; e = {v1,v2} & E(G) for v
v1 € V1 and vg € Va; edge axiom %y, Ty,

o Write Q = Q(m - Ty, Ty,)

e Want to show that

|N(m : xle’l&)l < n_Q(logn)
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Edge Axioms

XE(G) + xEULe(G) =0

e m monomial; e = {v1,v2} & E(G) for
v1 € V1 and vg € Va; edge axiom %y, Ty,

o Write Q = Q(m - Ty, Ty,)

n..ﬂg
Vie

e Want to show that |4

(- @y, 20y)| < 08 XE(G) + xBue(G) = xB(G) + XE(G) - Xe(G)
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Edge Axioms

XE(G) + xEULe(G) =0

e m monomial; e = {v1,v2} & E(G) for
v1 € V1 and vg € Va; edge axiom %y, Ty,

o Write Q = Q(m - Ty, Ty,)

n..ﬂg
Vie

e Want to show that 14 Vs V3

(- @y, 20y)| < 08 XE(G) + xBue(G) = xB(G) + XE(G) - Xe(G)

p(m - w’le'U2) =n* Z Z XH(t) (G)

H:
vc(H)SthQ
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Edge Axioms

e m monomial; e = {v1,v2} & E(G) for
v1 € V1 and vg € Va; edge axiom %y, Ty,

e Write Q = Q(m ) xmxvz)
e Want to show that

‘N(m : xlew)l < n_Q(logn)

P - Ty Tayy) = Z ZXH(t )+ Z ZXH(t

()<dQ ()<dQ

{1 2}¢H {1 2}eH
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Edge Axioms

e m monomial; e = {v1,v2} & E(G) for
v1 € V1 and vg € Va; edge axiom %y, Ty,

e Write Q = Q(m ) xmxvz)
e Want to show that

‘N(m : xlew)l < n_Q(logn)

N(m ) xlev2) =n* Z Z XH(t)(G)
H

vc(HS:d @

{1,2}¢H
ve(HU{1,2})=d+1
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Edge Axioms, Failed Attempt

(4, 20,)| = 0] X Xowul© )

vc(H) teQ

{1,2)¢H
ve(HU{1,2})=d+1

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams

24/42



Edge Axioms, Failed Attempt

(4, 20,)| = 0] X Xowul© )

teQ
vc(H)
{1,2Y¢H
ve(HU{1,2})=d+1
Lemma
With high probability over G ~ G(n, k,1/2) it holds for any H and () that
‘ZXH(t) ‘ pk—ve(H)/8

te@
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Edge Axioms, Failed Attempt

(4, 20,)| = 0] X Xowul© )

vc(H) teQ

{1,2)¢H
ve(HU{1,2})=d+1

Lemma
With high probability over G ~ G(n, k,1/2) it holds for any H and () that

| 3 Xar (G)] < mrvere
te@
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Edge Axioms, Failed Attempt

im0, 20,)] = 07| X Xowul©

vc(H) teQ

{1,2)¢H
ve(HU{1,2})=d+1

> s
H.
ve(H)=d
{12)¢H
ve(HU{1,2})=d+1

IN

Lemma

With high probability over G ~ G(n, k,1/2) it holds for any H and () that

‘ 2 XH(t>(G)\ < ph—veH

teQ
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Edge Axioms, Failed Attempt

im0, 20,)] = 07| X Xowul©

vc(H) teQ

{1,2)¢H
ve(HU{1,2})=d+1

> s
H.
ve(H)=d
{12)¢H
ve(HU{1,2})=d+1

IN

Lemma

~ 9k, —d/8 Q(k)

=~n

With high probability over G ~ G(n, k,1/2) it holds for any H and () that

‘ 2 XH(t>(G)\ < ph—veH

teQ
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Cores
Definition

A vertex induced subgraph F' of H is a core if any minimum vertex cover of F'is also a vertex
cover of H.
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Cores

Definition
A vertex induced subgraph F' of H is a core if any minimum vertex cover of F'is also a vertex
cover of H.

core
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Cores

Definition
A vertex induced subgraph F' of H is a core if any minimum vertex cover of F'is also a vertex
cover of H.

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every
graph F' in the image of core satisfies

o [V(E(F))] < 3-ve(F)

core
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Cores

Definition
A vertex induced subgraph F' of H is a core if any minimum vertex cover of F'is also a vertex
cover of H.

Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F' in the image of core satisfies
o |V(E(F))| <3-ve(F), and
e there is an edge set E7. such that core(H) = F iff E(H) = E(F)UE for E C Ej,.
° 0——————0‘=:::::-_—__:_—————:-§\“i °

1 ]
core
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Cores

Definition
A vertex induced subgraph F' of H is a core if any minimum vertex cover of F'is also a vertex
cover of H.

Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F' in the image of core satisfies
o |V(E(F))| <3-ve(F), and
e there is an edge set E7. such that core(H) = F iff E(H) = E(F)UE for E C Ej,.
° 0——————0‘=:::::-_——_:_—————:-§\“i °

1 ]
core

core”(F)=H(F)={H | E(H) = E(F)U E, where E C E}.}
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Edge Axioms, Successful Attempt

1(m - 2, w05)] = 07" > ZXH G)|

vc(H) d
{1,.2)¢H
ve(HU{1,2})=d+1

Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every

graph F' in the image of core satisfies
° ‘V(E(F))| < 3-ve(F), and

e there is B} such that core™ (F) = H(F)={H | E(H) = E(F)UE, where E C E}}.
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let us analyze this for fixed t 4

Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every

graph F' in the image of core satisfies
o [V(E(F))| <3-ve(F), and
e there is B} such that core™ (F) = H(F)={H | E(H) = E(F)UE, where E C E}.}.
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Edge Axioms, Successful Attempt

e For fixed t4 we want to analyze

Z Z XE(tAUtB)(G)

tBEQR\v(B(r)) PCEL
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Edge Axioms, Successful Attempt

e For fixed t4 we want to analyze

Z Z XE(tAUtB)(G) = Z 2|EI*?| ) H{E}(tAUtB) present}(G)

tBEQu\V (B(r) ESEL tBEQRN\V (B(r))

e Fact: common neighborhoods behave as expected in random graphs: for small tuple ¢,
that is, || < d, we have

1\ 1
NNV = | ()N Al = (107 (5)
u€t
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Edge Axioms, Successful Attempt

e For fixed t4 we want to analyze
G) = 2lFil g G
Z Z XE(tAUtB)( ) Z {E%(taUtR) present}( )
tBEQM\v (B(r) ECEL tBEQ\V (B(F)
<((1 +n—1/5)n)k—\V(E(F))\ < gpk-IVEE)

e Fact: common neighborhoods behave as expected in random graphs: for small tuple ¢,
that is, [t| < d, we have

1\ It
NV = [N Nl = 1207 () n
u€et
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Edge Axioms, Successful Attempt
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m-znzs) <07 B3N @YY X (G

F ta€Qy (m(r)) tBEQR\v(B(r) ECEL

<3pk—IV(B(F)|

<33 VEOI ST (@)

F tA€Qv (E(F))

Lemma (recall)
With high probability over G ~ G(n, k,1/2) it holds for any F' and @ that

| Z XF(t)(G)| < nk—vc(lf)/S
te@
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Proof Summary

e Duality gives the notion of a §-pseudo-measure
e We construct a n~°8")_pseudo-measure for clique by Pseudo-Calibration:
—k
pm)=n"" %" > xuw(G)
HC(%) teQ(m)
ve(H)<d
e We argued that
= is large on 1: w(l) =1
= 4 is small on edge-axioms: lp(m - )| < n~P0oen)
e It remains to argue that
= /i is basically non-negative: p(m) > —n~?0oen)
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Recap & Some Open Problems

Recap:

e Poly-time algorithms based on unary linear programming believe that

G(n,1/2) ~ G(n,1/2,n"/1%)
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Recap & Some Open Problems

Recap:

e Poly-time algorithms based on unary linear programming believe that
G(n,1/2) ~ G(n,1/2,n"/1%)
=- establishes a weak version of the planted clique conjecture for this class of algorithms

Some open problems:

e Prove the planted clique conjecture for Resolution.
e Is it possible to obtain a combinatorial description of our pseudo-measure?

e Improve the size of the planted clique to n in the block model
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Recap & Some Open Problems

Recap:

e Poly-time algorithms based on unary linear programming believe that
G(n,1/2) ~ G(n,1/2,n"/1%)
=- establishes a weak version of the planted clique conjecture for this class of algorithms

Some open problems:

e Prove the planted clique conjecture for Resolution.
e Is it possible to obtain a combinatorial description of our pseudo-measure?
e Improve the size of the planted clique to n in the block model

Thanks!
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Cores, Construction
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Cores, Construction

ve S1

e S is maximal vertex set with a matching in H into vc
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52 vC Sl
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Cores, Construction

=1
.

H
F

E;,

52 vC Sl

e S is maximal vertex set with a matching in H into vc

e Sy is maximal vertex set with a matching in H \ S into ve
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On the (Almost) Non-Negativity of u
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Non-Negativity: Some Intuition

e Recall that u is small on edge-axioms while p(1) ~ 1
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e However, the expected value of p(x,x,) is

Elp(zuzy)] = Q(muxv)/nk = 1/n”
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e However, the expected value of p(x,x,) is

Elp(zuzy)] = Q(quv)/nk = 1/n”

e Also, if we sum over all v; € V7 and vy € V5 we have

:u(l) = Z Z M(mvll‘vz) ~ Z Z :H‘{Ul’vg is an edge}(G)M(xleU2) ~1

vi€V] v2€VL v1€V] v2€VR
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Elp(zuzy)] = Q(quv)/nk = 1/n”

e Also, if we sum over all v; € V7 and vy € V5 we have

:u(l) = Z Z M(mvll‘vz) ~ Z Z :H‘{Ul’vg is an edge}(G)M(xleU2) ~1

vi€V] v2€VL v1€V] v2€VR

e Hence, conditioned on the edge uv being present, then

E[pu(zyzy) | uv € E(G)] = 2/n?
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Non-Negativity: Some Intuition

Recall that p is small on edge-axioms while p(1) ~ 1

However, the expected value of u(z,z,) is

Elu(zyzy)] = Qzyzy) /0" =1/n?

Also, if we sum over all v; € V4 and vy € V5 we have

:u(l) = Z Z M(mvll‘vz) ~ Z Z :H‘{Ul’vg is an edge}(G)M(xleUQ) ~1

vi€V] v2€VL v1€V] v2€VR

Hence, conditioned on the edge uv being present, then
E[u(xyzy) | uv € E(G)] = 2/n?

= on some rectangles @ the measure does not concentrate around |Q|/n*
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Non-Negativity: Decomposition of Rectangles

e Need to identify rectangles whose value deviates significantly from the expected value
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Non-Negativity: Decomposition of Rectangles

e Need to identify rectangles whose value deviates significantly from the expected value

g

e Recursively decompose a rectangle as illustrated

W \%3 1%} ...
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Non-Negativity: Decomposition of Rectangles

e Need to identify rectangles whose value deviates significantly from the expected value

g

e Recursively decompose a rectangle as illustrated

W \%3 1%}
e
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Non-Negativity: Decomposition of Rectangles

e Need to identify rectangles whose value deviates significantly from the expected value

e Recursively decompose a rectangle as illustrated

14 V2 Vs
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Non-Negativity: Decomposition of Rectangles

e Need to identify rectangles whose value deviates significantly from the expected value

e Recursively decompose a rectangle as illustrated

Vs .. Vi
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Non-Negativity: Decomposition of Rectangles

e Need to identify rectangles whose value deviates significantly from the expected value

e Recursively decompose a rectangle as illustrated

eeceo@ece@ec e
00000 @cccocoe

0
.
.
.
.
.
0
.

®
.
.
.

CERR IR IR NON
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Non-Negativity: Decomposition of Rectangles

e Need to identify rectangles whose value deviates significantly from the expected value

e Recursively decompose a rectangle as illustrated
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Non-Negativity: Decomposition of Rectangles Il

e Decomposition partitions rectangle Qg into collection Q, of size n°1°8™, such that each
rectangle Q € Q satisfies
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e Decomposition partitions rectangle Qg into collection Q, of size n°1°8™, such that each
rectangle Q € Q satisfies

= () is an edge-axiom hence u(Q) > —n~10c1087 or

Q| =~ nF~9 thus u(Q) > —n—10slen or

= Q is small;
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= () is an edge-axiom hence u(Q) > —n~10c1087 or
Q| =~ nF~9 thus u(Q) > —n—10slen or

= (@ has large, well-behaved blocks & singletons adjacent to @
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e Decomposition partitions rectangle Qg into collection Q, of size n°1°8™, such that each
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= () is an edge-axiom hence u(Q) > —n~10c1087 or
Q| =~ nF~9 thus u(Q) > —n—10slen or

= (@ has large, well-behaved blocks & singletons adjacent to @

= Q is small;

- We show that p concentrates on such @ around strictly positive value
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Non-Negativity: Decomposition of Rectangles Il

e Decomposition partitions rectangle Qg into collection Q, of size n°1°8™, such that each
rectangle Q € Q satisfies

= () is an edge-axiom hence u(Q) > —n~10c1087 or
Q| =~ nF~9 thus u(Q) > —n—10slen or

= (@ has large, well-behaved blocks & singletons adjacent to @

= @ is small;
- We show that p concentrates on such @ around strictly positive value

e May conclude for any monomial m that ju(m) > —n~¥0gn)
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Non-Negativity: Concentration of Measure

Lemma
For any well-behaved rectangle () with ¢ singletons,
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Non-Negativity: Concentration of Measure

Lemma
For any well-behaved rectangle () with ¢ singletons, with high probability, it holds that

p@) = 2EEDE QI - (1 407)
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Non-Negativity: Concentration of Measure

Lemma
For any well-behaved rectangle () with ¢ singletons, with high probability, it holds that

p@ = ZEEDR QT (107

" —
##conditioned edges  expectation

.......Kyyly‘
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Non-Negativity: Concentration of Measure, Proof Idea

.
.
.
.
.
.
.
.

Vi
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Non-Negativity: Concentration of Measure, Proof Idea

)+ > ZXH
ve(i<d "9
{1 2}eH

{1 2}¢
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Non-Negativity: Concentration of Measure, Proof Idea

A Vi
Z Z Xm@e(G) + Z Z XH(t)
H: teq H:
ve(H)<d (H)<d
{1 2}¢H {1 2}eH
Z Z X (G
(H)<d teQ
{1 2}eH
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Non-Negativity: Concentration of Measure, Proof Idea

Vi

> ZQXH( )+ ; ZXH

H: te :
ve(H)<d (H)<d
{1 2y gH {1 2} eH
Z Z xu(@)+n7" 3 Y xa
ve(Hy<a "< ve(fi=a ¢
{1 2YeH ve(HU{1,2})=d+1

like edge axiom = n—(ogn)
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Non-Negativity: Concentration of Measure, Proof Idea
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Non-Negativity: Concentration of Measure, Proof Idea

.
.
.
.
.
.
.
.

Vi

e Finally left with sum over H with all conditioned edges present

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 42/42



Non-Negativity: Concentration of Measure, Proof Idea

.
.
.
.
.
.
.
.

Vi

e Finally left with sum over H with all conditioned edges present
e As ¢ < d, there is at least one unconditioned edge left
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Vi

e Finally left with sum over H with all conditioned edges present
e As ¢ < d, there is at least one unconditioned edge left

e Rely on cores as in edge-axioms
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Non-Negativity: Concentration of Measure, Proof Idea

.
.
.
.
.
.
.
.

Vi

Finally left with sum over H with all conditioned edges present

As ¢ < d, there is at least one unconditioned edge left

Rely on cores as in edge-axioms

Cores with single edge have concentration (1 +n™¢)
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