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Planted Clique

• Erdős-Rény random graph G ∼ G(n, 1/2)
• max clique of size ≈ 2 log n

• Planted k-clique: G ∼ G(n, 1/2, k)
• G0 + Kk, where G0 ∼ G(n, 1/2)

Can these be distinguished
in poly-time?
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• max clique of size ≈ 2 log n

• Planted k-clique: G ∼ G(n, 1/2, k)
• G0 + Kk, where G0 ∼ G(n, 1/2)

• Näıve nO(log n) algorithm: max clique in G ∼ G(n, 1/2) of size (2 + o(1)) log n

• Poly-time algorithm for k = Ω(
√

n) [AKS98]

• Otherwise believed to be hard: planted clique conjecture [FK03]

Goal
Prove the planted clique conjecture.
search: G ∼ G(n, 1/2, k) find k-clique refutation: G ∼ G(n, 1/2) prove no k-clique decision: G from G(n, 1/2, k) or G(n, 1/2)
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• Näıve nO(log n) algorithm: max clique in G ∼ G(n, 1/2) of size (2 + o(1)) log n

• Poly-time algorithm for k = Ω(
√

n) [AKS98]

• Otherwise believed to be hard: planted clique conjecture [FK03]

Goal
Prove the planted clique conjecture for bounded computational models.
search: G ∼ G(n, 1/2, k) find k-clique refutation: G ∼ G(n, 1/2) prove no k-clique decision: G from G(n, 1/2, k) or G(n, 1/2)

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 1/42



Planted Clique
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Our Results
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Our Results

Theorem (informal)
Algorithms based on unary linear programming require time nΩ(log n) to distinguish a graph
sampled from G(n, 1/2) versus the planted distribution G(n, 1/2, n1/100).

Show result through proof complexity:
• Trace of algorithm is proof of output
• Show proofs based on unary linear programming need to be long

Boils down to a size lower bound in unary Sherali-Adams
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Context & Previous Results

Claim: “G ∼ G(n, 1/2) contains a clique of size k = n1/100”

Why Sum-of-Squares?

• Optimal under Unique Games
Conjecture for many optimization
problems

• Captures best algos for clique Resolution Nullstellensatz

Polynomial Calculus Sherali-Adams

Sum-of-Squares

R

R

Tree-like Resolution Nullstellensatz, no dual
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Context & Previous Results

Claim: “G ∼ G(n, 1/2) contains a clique of size k = n1/100”

Results of similar flavor:

• Monotone & bounded depth circuits
[Rossman08,Rossman10]

• Resolution:
• non-tight lower bounds [BIS07,Pang21]

• weak encoding [LPRT17,DGGM20]

• Degree lower bounds for SoS
[MPW15,. . . ,BHKKMP19,Pang21]
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Context & Previous Results

Claim: “G ∼ G(n, 1/2) contains a clique of size k = n1/100”

Why is progress so slow?

• We have basically one way to prove
size lower bounds: restrictions

• Usually gives size lower bounds
exp
(
Ω(degree lower bound)

)
• O(log n) degree upper bound

• Want: nΩ(log n) size lower bound

• Seems to require new techniques. . .
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Clique Formula & unary Sherali-Adams
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Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique(G, k)

• k sets of vertices V1, . . . , Vk of n vertices each
• Boolean variables xv and x̄v for each vertex ⇔ xv = 1 iff v in k-clique

• Boolean axioms y(1 − y) = 0

• Negation axioms 1 − y = ȳ

• Block axioms ∑v∈Vi
xv = 1

• Edge axioms xuxv = 0 for {u, v} ̸∈ E(G)

V1 V2 V3 Vk. . .

clique(G, k) sat if and only if there is a k-clique with a single vertex per block
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• Block axioms ∑v∈Vi
xv = 1

• Edge axioms xuxv = 0 for {u, v} ̸∈ E(G)

V1 V2 V3 Vk. . .

clique(G, k) sat if and only if there is a k-clique with a single vertex per block

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 6/42



Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique(G, k)

• k sets of vertices V1, . . . , Vk of n vertices each
• Boolean variables xv and x̄v for each vertex ⇔ xv = 1 iff v in k-clique

• Boolean axioms y(1 − y) = 0

• Negation axioms 1 − y = ȳ
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The Unary Sherali-Adams Proof System

• Boolean variables x1, . . . , xm, x̄1, . . . , x̄m

• Polynomial system P = {p1 = 0, . . . , pm = 0} over R[x]

• A unary Sherali-Adams refutation of P is a polynomial of the form∑
i∈[m]

qi pi +
∑

A,B⊆[n]
cA,B≥0

cA,B

∏
i∈A

xi

∏
j∈B

x̄j = −M

for integer M, cA,B ≥ 0 and qi ∈ Z[x]

• The size of such a refutation is the sum of the magnitude of all coefficients
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Our Result (Formal)

• Let G(n, k, p) be distribution over k-partite graphs, partitions of size n, include edge
e = {u, v} with probability p iff u, v in distinct parts

Theorem (Formal)
Let G ∼ G(n, k, p) with p ≤ 1/2 and denote by D the max clique size of G. Then, w.h.p.,
unary Sherali-Adams requires size nΩ(D) to refute clique(G, n1/100).

Today: only p = 1/2 and hence D ≈ 2 log n

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 8/42



Our Result (Formal)

• Let G(n, k, p) be distribution over k-partite graphs, partitions of size n, include edge
e = {u, v} with probability p iff u, v in distinct parts

Theorem (Formal)
Let G ∼ G(n, k, p) with p ≤ 1/2 and denote by D the max clique size of G. Then, w.h.p.,
unary Sherali-Adams requires size nΩ(D) to refute clique(G, n1/100).

Today: only p = 1/2 and hence D ≈ 2 log n

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 8/42



Our Result (Formal)

• Let G(n, k, p) be distribution over k-partite graphs, partitions of size n, include edge
e = {u, v} with probability p iff u, v in distinct parts

Theorem (Formal)
Let G ∼ G(n, k, p) with p ≤ 1/2 and denote by D the max clique size of G. Then, w.h.p.,
unary Sherali-Adams requires size nΩ(D) to refute clique(G, n1/100).

Today: only p = 1/2 and hence D ≈ 2 log n

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 8/42



Our Result (Formal)

• Let G(n, k, p) be distribution over k-partite graphs, partitions of size n, include edge
e = {u, v} with probability p iff u, v in distinct parts

Theorem (Formal)
Let G ∼ G(n, k, p) with p ≤ 1/2 and denote by D the max clique size of G. Then, w.h.p.,
unary Sherali-Adams requires size nΩ(D) to refute clique(G, n1/100).

Today: only p = 1/2 and hence D ≈ 2 log n

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 8/42



Proof Ideas

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 9/42



How to Lower Bound Magnitude of Coefficients

• Write LP to search for min size unary Sherali-Adams refutation of P
• Lower bound size by duality: craft a δ-pseudo-measure µ for P which is linear,

• almost non-negative: for monomials m =
∏

i∈A xi

∏
j∈B x̄j

µ(m) ≥ −δ

• small on axioms: for all monomials m, axioms p ∈ P

|µ(m · p)| ≤ δ

• Implies a µ(1)/δ unary Sherali-Adams size lower bound to refute P:∑
pi∈P

µ(qipi) +
∑

A,B⊆[n]
cA,B≥0

cA,B µ
( ∏

i∈A

xi

∏
j∈B

x̄j

)
︸ ︷︷ ︸

≥−|cA,B |δ

= − µ(M)︸ ︷︷ ︸
≤−µ(1)
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Pseudo-Measure: Construction, Failed Attempt I

Goal
Construct a n−Ω(log n)-pseudo-measure for clique(G, k), where G ∼ G(n, k, 1/2) and k ≤ n0.1

linear operator µ such that µ(m) ≥ −n−Ω(log n) and |µ(m · p)| ≤ n−Ω(log n), while µ(1) ≈ 1

Think µ as “progress measure” on monomials:

• small on axioms
• large on 1

• Intuition: µ(m) should be contribution of m towards contradiction
• Idea 1: Let µ(m) be the fraction of assignments m rules out

• For tuple t relevant assignment ρt is ρt(xv) = 1 if v ∈ t and 0 otherwise
• Associate m with rectangle Q(m) consisting of tuples t such that ρt(m) = 1
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nk

• µ(1) = 1 & µ(m) ≥ 0
• µ(

∑
v∈V1 xv − 1) = 0

• µ(xuxv) = n−2

V1 V2 V3 Vk. . .
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Pseudo-Measure: Construction, Failed Attempt II

Goal
Construct a n−Ω(log n)-pseudo-measure for clique(G, k), where G ∼ G(n, k, 1/2) and k ≤ n0.1

linear operator µ such that µ(m) ≥ −n−Ω(log n) and |µ(m · p)| ≤ n−Ω(log n), while µ(1) ≈ 1

• Idea 2: Let us associate a monomial m with a subset of Q(m)
• Attempt 2: cliques in Q(m)

µ0(m) = n−k
∑

t∈Q(m)
2(k

2)1{t is clique}(G)

• In expectation over G ∼ G(n, k, 1/2) all satisfied:
• EG[µ0(1)] = n−k

∑
t∈Q(1) 2(k

2) · EG[1{t is clique}(G)] = 1
• non-neg & all axioms are 0

Problem: no k-cliques in the graph!
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Pseudo-Measure: Construction, Successful Attempt

Goal
Construct a n−Ω(log n)-pseudo-measure for clique(G, k), where G ∼ G(n, k, 1/2) and k ≤ n0.1

linear operator µ such that µ(m) ≥ −n−Ω(log n) and |µ(m · p)| ≤ n−Ω(log n), while µ(1) ≈ 1

• Idea 2: Let us associate a monomial m with a subset of Q(m)
• Attempt 2: cliques in Q(m)

µ0(m) = n−k
∑

t∈Q(m)
2(k

2)1{t is clique}(G)

• Tweak µ0 by Pseudo-Calibration to obtain a pseudo-measure: [BHKKMP13]

• Choose measure µ0 that satisfies required properties in expectation
• Write µ0 in Fourier basis and truncate to reduce variance
• Hope: all properties satisfied as everything concentrates around expected value
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Interlude: Fourier Characters
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Fourier Characters

• Character χe for each potential edge e = {u, v}, i.e., if u, v in distinct blocks,

χe(G) =
{

1 if e ∈ E(G), and
−1 if e ̸∈ E(G).

• For set E of potential edges we let χE(G) =
∏

e∈E χe(G). In particular χ∅(G) = 1.

µ0(m) = n−k
∑

t∈Q(m)
2(k

2)1{t is clique}(G)

= n−k
∑

t∈Q(m)

∑
E⊆(t

2)
χE(G)
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E

χE(G) + χE∪e(G) = 0
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Fourier Characters: Pattern Graphs

Convenient to identify edge sets that “look the same”

µ0(m) = n−k
∑

t∈Q(m)

∑
E⊆(t

2)
χE(G)

= n−k
∑

t∈Q(m)

∑
H⊆(k

2)
χH(t)(G)

= n−k
∑

H⊆(k
2)

∑
t∈Q(m)

χH(t)(G) V1 V2 V3 Vk. . .

H
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∑
E⊆(t

2)
χE(G)

= n−k
∑

t∈Q(m)

∑
H⊆(k

2)
χH(t)(G)

= n−k
∑

H⊆(k
2)

∑
t∈Q(m)

χH(t)(G) V1 V2 V3 Vk. . .

H

t

H(t)
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Back to Pseudo-Calibration
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Pseudo-Measure by Pseudo-Calibration

Goal
Construct a n−Ω(log n)-pseudo-measure for clique(G, k), where G ∼ G(n, k, 1/2) and k ≤ n0.1

• Attempt 2: cliques in Q(m)

µ0(m) = n−k
∑

H⊆(k
2)

∑
t∈Q(m)

χH(t)(G)

• Tweak µ0 by Pseudo-Calibration to obtain a pseudo-measure: [BHKKMP13]

• Choose measure µ0 that satisfies required properties in expectation
• Write µ0 in Fourier basis and truncate to reduce variance
• Hope: all properties satisfied as everything concentrates around expected value

Can truncation even ensure that µ(1) ≈ 1?
Yes – only allow H = ∅! That was attempt 1. . .
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Pseudo-Calibration: 2nd Moment Calculation

Let us analyze the 2nd moment of µ0(1); recall that EG[µ0(1)] = 1

E[µ2
0(1)] = n−2k

∑
H,H′⊆(k

2)

∑
t,t′

E[χH(t)(G)χH′(t′)(G)]

= n−2k
∑

H⊆(k
2)

∣∣{(t, t′) : tV (E(H)) = t′
V (E(H))}

∣∣
= n−2k

∑
H⊆(k

2)
n|V (E(H))|+2(k−|V (E(H))|)

=
∑

H⊆(k
2)

n−|V (E(H))|

EG[χe(G)] = 0

EG[χ2
e(G)] = 1

= 1 + n−Ω(1), if only sum H with
|V (E(H))| ≤ η log n.
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Let us analyze the 2nd moment of µ0(1); recall that EG[µ0(1)] = 1

E[µ2
0(1)] =

∑
H⊆(k
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∑
H⊆(k
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|V (E(H))|=i

n−i

≈ 1 +
k∑

i=1
n−i ·

(
k

i

)
2(i

2)
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i=1
exp

(
−i(log n − log k − i)

)

H(t′)

t′

V1 V2 V3 Vk. . .

H

t

H(t)

EG[χe(G)] = 0

EG[χ2
e(G)] = 1

= 1 + n−Ω(1), if only sum H with
|V (E(H))| ≤ η log n.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 20/42



Pseudo-Calibration: 2nd Moment Calculation

Let us analyze the 2nd moment of µ0(1); recall that EG[µ0(1)] = 1

E[µ2
0(1)] =

∑
H⊆(k

2)
n−|V (E(H))|

=
k∑

i=0

∑
H⊆(k

2)
|V (E(H))|=i

n−i

≈ 1 +
k∑

i=1
n−i ·

(
k

i

)
2(i

2)

≈ 1 +
k∑

i=1
exp

(
−i(log n − log k − i)

)

H(t′)

t′

V1 V2 V3 Vk. . .

H

t

H(t)

EG[χe(G)] = 0

EG[χ2
e(G)] = 1

= 1 + n−Ω(1), if only sum H with
|V (E(H))| ≤ η log n.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 20/42



Pseudo-Calibration: 2nd Moment Calculation

Let us analyze the 2nd moment of µ0(1); recall that EG[µ0(1)] = 1

E[µ2
0(1)] =

∑
H⊆(k

2)
n−|V (E(H))|

=
k∑

i=0

∑
H⊆(k

2)
|V (E(H))|=i

n−i

≈ 1 +
k∑

i=1
n−i ·

(
k

i

)
2(i

2)

≈ 1 +
k∑

i=1
exp

(
−i(log n − log k − i)

)

H(t′)

t′

V1 V2 V3 Vk. . .

H

t

H(t)

EG[χe(G)] = 0

EG[χ2
e(G)] = 1

= 1 + n−Ω(1), if only sum H with
|V (E(H))| ≤ η log n.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 20/42



Pseudo-Calibration: 2nd Moment Calculation

Let us analyze the 2nd moment of µ0(1); recall that EG[µ0(1)] = 1

E[µ2
0(1)] =

∑
H⊆(k

2)
n−|V (E(H))|

=
k∑

i=0

∑
H⊆(k

2)
|V (E(H))|=i

n−i

≈ 1 +
k∑

i=1
n−i ·

(
k

i

)
2(i

2)

≈ 1 +
k∑

i=1
exp

(
−i(log n − log k − i)

)

H(t′)

t′

V1 V2 V3 Vk. . .

H

t

H(t)

EG[χe(G)] = 0

EG[χ2
e(G)] = 1

= 1 + n−Ω(1), if only sum H with
|V (E(H))| ≤ η log n.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 20/42



Pseudo-Calibration: 2nd Moment Calculation

Let us analyze the 2nd moment of µ0(1); recall that EG[µ0(1)] = 1

E[µ2
0(1)] =

∑
H⊆(k

2)
n−|V (E(H))|

=
k∑

i=0

∑
H⊆(k

2)
|V (E(H))|=i

n−i

≈ 1 +
k∑

i=1
n−i ·

(
k

i

)
2(i

2)

≈ 1 +
k∑

i=1
exp

(
−i(log n − log k − i)

)

H(t′)

t′

V1 V2 V3 Vk. . .

H

t

H(t)

EG[χe(G)] = 0

EG[χ2
e(G)] = 1

= 1 + n−Ω(1), if only sum H with
|V (E(H))| ≤ η log n.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 20/42



Pseudo-Measure: Actual Definition

• Truncating µ0 to obtain µ guarantees µ(1) ≈ 1

• Tension: ensure µ remains basically non-negative and small on edge axioms
• Careful choice of truncation by vertex cover:

µ(m) = n−k
∑

H⊆(k
2)

vc(H)≤d

∑
t∈Q(m)

χH(t)(G)

where d = η log n for η > 0 small
• Same calculation as on previous slide shows that µ(1) = 1 ± n−Ω(1) with high probability
• Remains to argue that

• µ is small on edge-axioms: |µ(m · xuxv)| ≤ n−Ω(log n)

• µ is basically non-negative: µ(m) ≥ −n−Ω(log n)
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• Careful choice of truncation by vertex cover:
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where d = η log n for η > 0 small
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• Remains to argue that

• µ is small on edge-axioms: |µ(m · xuxv)| ≤ n−Ω(log n) now
• µ is basically non-negative: µ(m) ≥ −n−Ω(log n) maybe later. . .
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Edge Axioms
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Edge Axioms

• m monomial; e = {v1, v2} ̸∈ E(G) for
v1 ∈ V1 and v2 ∈ V2; edge axiom xv1xv2

• Write Q = Q(m · xv1xv2)

• Want to show that

|µ(m · xv1xv2)| ≤ n−Ω(log n)

m · xv1 xv2

v1 v2

V1 V2 V3 Vk. . .

χE(G) + χE∪e(G) = χE(G) + χE(G) · χe(G)
= χE(G) − χE(G) = 0

µ(m · xv1xv2) = n−k
∑
H:

vc(H)≤d

∑
t∈Q

χH(t)(G)
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• Write Q = Q(m · xv1xv2)

• Want to show that

|µ(m · xv1xv2)| ≤ n−Ω(log n)

e ̸∈ E(G)

E

χE(G) + χE∪e(G) = 0

V1 V2 V3 Vk. . .

χE(G) + χE∪e(G) = χE(G) + χE(G) · χe(G)
= χE(G) − χE(G) = 0

µ(m · xv1xv2) = n−k
∑
H:

vc(H)≤d
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Edge Axioms, Failed Attempt

|µ(m · xv1xv2)| = n−k
∣∣∣ ∑

H:
vc(H)=d
{1,2}̸∈H

vc(H∪{1,2})=d+1

∑
t∈Q

χH(t)(G)
∣∣∣

≤
∑
H:

vc(H)=d
{1,2}̸∈H

vc(H∪{1,2})=d+1

n−d/8 ≈ 2dkn−d/8 ≈ nΩ(k)

Lemma
With high probability over G ∼ G(n, k, 1/2) it holds for any H and Q that∣∣∣∑

t∈Q

χH(t)(G)
∣∣∣ ≤ nk−vc(H)/8 .
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Cores
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Cores

Definition
A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex
cover of H.

Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F in the image of core satisfies

•
∣∣V (E(F )

)∣∣ ≤ 3 · vc(F ), and
• there is an edge set E⋆

F such that core(H) = F iff E(H) = E(F ) ∪ E for E ⊆ E⋆
F .

core−1(F ) = H(F ) = {H | E(H) = E(F ) ∪ E, where E ⊆ E⋆
F }
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Back to Edge Axioms
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Edge Axioms, Successful Attempt

|µ(m · xv1xv2)| = n−k
∣∣∣ ∑

H:
vc(H)=d
{1,2}̸∈H

vc(H∪{1,2})=d+1

∑
t∈Q

χH(t)(G)
∣∣∣

Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F in the image of core satisfies

•
∣∣V (E(F )

)∣∣ ≤ 3 · vc(F ), and
• there is E⋆

F such that core−1(F ) = H(F ) = {H | E(H) = E(F ) ∪ E, where E ⊆ E⋆
F }.
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|µ(m · xv1xv2)| ≤ n−k
∑
F

∣∣∣∑
t∈Q

∑
H∈H(F )

χH(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣∑
t∈Q

χF (t)(G)
∑

E⊆E⋆
F

χE(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣ ∑
tA∈QV (E(F ))

χF (tA)(G) ·
∑

tB∈Q[k]\V (E(F ))

∑
E⊆E⋆

F

χE(tA∪tB)(G)

︸ ︷︷ ︸
let us analyze this for fixed tA

∣∣∣
Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F in the image of core satisfies

•
∣∣V (E(F )

)∣∣ ≤ 3 · vc(F ), and
• there is E⋆

F such that core−1(F ) = H(F ) = {H | E(H) = E(F ) ∪ E, where E ⊆ E⋆
F }.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 28/42



Edge Axioms, Successful Attempt

|µ(m · xv1xv2)| ≤ n−k
∑
F

∣∣∣∑
t∈Q

∑
H∈H(F )

χH(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣∑
t∈Q

χF (t)(G)
∑

E⊆E⋆
F

χE(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣ ∑
tA∈QV (E(F ))

χF (tA)(G) ·
∑

tB∈Q[k]\V (E(F ))

∑
E⊆E⋆

F

χE(tA∪tB)(G)

︸ ︷︷ ︸
let us analyze this for fixed tA

∣∣∣
Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F in the image of core satisfies

•
∣∣V (E(F )

)∣∣ ≤ 3 · vc(F ), and
• there is E⋆

F such that core−1(F ) = H(F ) = {H | E(H) = E(F ) ∪ E, where E ⊆ E⋆
F }.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 28/42



Edge Axioms, Successful Attempt

|µ(m · xv1xv2)| ≤ n−k
∑
F

∣∣∣∑
t∈Q

∑
H∈H(F )

χH(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣∑
t∈Q

χF (t)(G)
∑

E⊆E⋆
F

χE(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣ ∑
tA∈QV (E(F ))

χF (tA)(G) ·
∑

tB∈Q[k]\V (E(F ))

∑
E⊆E⋆

F

χE(tA∪tB)(G)

︸ ︷︷ ︸
let us analyze this for fixed tA

∣∣∣
Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F in the image of core satisfies

•
∣∣V (E(F )

)∣∣ ≤ 3 · vc(F ), and
• there is E⋆

F such that core−1(F ) = H(F ) = {H | E(H) = E(F ) ∪ E, where E ⊆ E⋆
F }.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 28/42



Edge Axioms, Successful Attempt

|µ(m · xv1xv2)| ≤ n−k
∑
F

∣∣∣∑
t∈Q

∑
H∈H(F )

χH(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣∑
t∈Q

χF (t)(G)
∑

E⊆E⋆
F

χE(t)(G)
∣∣∣

≤ n−k
∑
F

∣∣∣ ∑
tA∈QV (E(F ))

χF (tA)(G) ·
∑

tB∈Q[k]\V (E(F ))

∑
E⊆E⋆

F

χE(tA∪tB)(G)

︸ ︷︷ ︸
let us analyze this for fixed tA

∣∣∣
Lemma
There is a map core that sends graphs H to a core of H with the following properties. Every
graph F in the image of core satisfies

•
∣∣V (E(F )

)∣∣ ≤ 3 · vc(F ), and
• there is E⋆

F such that core−1(F ) = H(F ) = {H | E(H) = E(F ) ∪ E, where E ⊆ E⋆
F }.

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 28/42



Edge Axioms, Successful Attempt
• For fixed tA we want to analyze∑

tB∈Q[k]\V (E(F ))

∑
E⊆E⋆

F

χE(tA∪tB)(G) =
∑

tB∈Q[k]\V (E(F ))

2|E⋆
F | · 1{E⋆

F (tA∪tB) present}(G)

m · xv1 xv2

v1 v2

F(tA)

E⋆
FF

tBtAV1 V2 V3 Vk. . .

• Fact: common neighborhoods behave as expected in random graphs: for small tuple t,
that is, |t| ≤ d, we have

|N∩(t) ∩ Vi| = |
⋂
u∈t

N(u) ∩ Vi| = (1 ± n−1/5)
(1

2

)|t|
n
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Edge Axioms, Successful Attempt

|µ(m · xv1xv2)| ≤ n−k
∑
F

∣∣∣ ∑
tA∈QV (E(F ))

χF (tA)(G) ·
∑

tB∈Q[k]\V (E(F ))

∑
E⊆E⋆

F

χE(tA∪tB)(G)

︸ ︷︷ ︸
≤3nk−|V (E(F ))|

∣∣∣

≤ 3
∑
F

n−|V (E(F ))|
∣∣∣ ∑

tA∈QV (E(F ))

χF (tA)(G)
∣∣∣

≤ 3
∑
F

n−d/8 ≈ 23d2
n−d/8 = n−Ω(log n)

Lemma (recall)
With high probability over G ∼ G(n, k, 1/2) it holds for any F and Q that∣∣∑

t∈Q

χF (t)(G)
∣∣ ≤ nk−vc(F )/8 .
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∑
E⊆E⋆

F

χE(tA∪tB)(G)

︸ ︷︷ ︸
≤3nk−|V (E(F ))|

∣∣∣

≤ 3
∑
F

n−|V (E(F ))|
∣∣∣ ∑

tA∈QV (E(F ))

χF (tA)(G)
∣∣∣

≤ 3
∑
F

n−d/8 ≈ 23d2
n−d/8 = n−Ω(log n)

Lemma (recall)
With high probability over G ∼ G(n, k, 1/2) it holds for any F and Q that∣∣∑

t∈Q

χF (t)(G)
∣∣ ≤ nk−vc(F )/8 .
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Summary & Recap
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Proof Summary

• Duality gives the notion of a δ-pseudo-measure

• We construct a n−Ω(log n)-pseudo-measure for clique by Pseudo-Calibration:

µ(m) = n−k
∑

H⊆(k
2)

vc(H)≤d

∑
t∈Q(m)

χH(t)(G)

• We argued that
• µ is large on 1: µ(1) ≈ 1
• µ is small on edge-axioms: |µ(m · xuxv)| ≤ n−Ω(log n)

• It remains to argue that
• µ is basically non-negative: µ(m) ≥ −n−Ω(log n)
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Recap & Some Open Problems

Recap:
• Poly-time algorithms based on unary linear programming believe that

G(n, 1/2) ≈ G(n, 1/2, n1/100)

⇒ establishes a weak version of the planted clique conjecture for this class of algorithms

Some open problems:
• Prove the planted clique conjecture for Resolution.

• Is it possible to obtain a combinatorial description of our pseudo-measure?

• Improve the size of the planted clique to n in the block model

Thanks!
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Further Material
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Cores
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Cores, Construction

H

• S1 is maximal vertex set with a matching in H into vc

• S2 is maximal vertex set with a matching in H \ S1 into vc
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Cores, Construction

S2 vc S1

E⋆
FF

H

• S1 is maximal vertex set with a matching in H into vc

• S2 is maximal vertex set with a matching in H \ S1 into vc
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On the (Almost) Non-Negativity of µ

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 37/42



Non-Negativity: Some Intuition

• Recall that µ is small on edge-axioms while µ(1) ≈ 1

• However, the expected value of µ(xuxv) is

E[µ(xuxv)] = Q(xuxv)/nk = 1/n2

• Also, if we sum over all v1 ∈ V1 and v2 ∈ V2 we have

µ(1) =
∑

v1∈V1

∑
v2∈V2

µ(xv1xv2) ≈
∑

v1∈V1

∑
v2∈V2

1{v1v2 is an edge}(G)µ(xv1xv2) ≈ 1

• Hence, conditioned on the edge uv being present, then

E[µ(xuxv) | uv ∈ E(G)] = 2/n2

⇒ on some rectangles Q the measure does not concentrate around |Q|/nk
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Non-Negativity: Decomposition of Rectangles

• Need to identify rectangles whose value deviates significantly from the expected value

• Recursively decompose a rectangle as illustrated
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Non-Negativity: Decomposition of Rectangles

• Need to identify rectangles whose value deviates significantly from the expected value

• Recursively decompose a rectangle as illustrated

nε

V1 V2 V3 Vk. . .

. . .
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Non-Negativity: Decomposition of Rectangles II

• Decomposition partitions rectangle Q0 into collection Q, of size nε log n, such that each
rectangle Q ∈ Q satisfies

• Q is an edge-axiom hence µ(Q) ≥ −n−10ε log n, or
• Q is small; |Q| ≈ nk−d thus µ(Q) ≥ −n−10ε log n, or
• Q has large, well-behaved blocks & singletons adjacent to Q

- We show that µ concentrates on such Q around strictly positive value

• May conclude for any monomial m that µ(m) ≥ −n−Ω(log n)
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Non-Negativity: Concentration of Measure

Lemma
For any well-behaved rectangle Q with ℓ singletons, with high probability, it holds that

µ(Q) = 2ℓ(k−(ℓ+1)/2)︸ ︷︷ ︸
#conditioned edges

· |Q|n−k︸ ︷︷ ︸
expectation

· (1 ± n−ε)

nε

V1 V2 V3 Vk. . .︸ ︷︷ ︸
ℓ

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 41/42



Non-Negativity: Concentration of Measure

Lemma
For any well-behaved rectangle Q with ℓ singletons, with high probability, it holds that

µ(Q) = 2ℓ(k−(ℓ+1)/2)︸ ︷︷ ︸
#conditioned edges

· |Q|n−k︸ ︷︷ ︸
expectation

· (1 ± n−ε)

nε

V1 V2 V3 Vk. . .︸ ︷︷ ︸
ℓ

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 41/42



Non-Negativity: Concentration of Measure

Lemma
For any well-behaved rectangle Q with ℓ singletons, with high probability, it holds that

µ(Q) = 2ℓ(k−(ℓ+1)/2)︸ ︷︷ ︸
#conditioned edges

· |Q|n−k︸ ︷︷ ︸
expectation

· (1 ± n−ε)

nε

V1 V2 V3 Vk. . .︸ ︷︷ ︸
ℓ

Kilian Risse (EPFL) Clique Is Hard on Average for Unary Sherali-Adams 41/42



Non-Negativity: Concentration of Measure, Proof Idea

nε

V1 V2 V3 Vk. . .

v1 v2

µ(Q) = n−k
∑
H:

vc(H)≤d

∑
t∈Q

χH(t)(G)

2 · n−k
∑
H:

vc(H)≤d
{1,2}∈H

∑
t∈Q

χH(t)(G) + n−k
∑
H:

vc(H)=d
vc(H∪{1,2})=d+1

∑
t∈Q

χH(t)(G)

︸ ︷︷ ︸
like edge axiom ≈ n−Ω(log n)
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