Clique Is Hard on Average for Unary Sherali-Adams

Kilian Risse

EPFL

MIAO Seminar, January 2024

Joint work with Susanna de Rezende and Aaron Potechin

Planted Clique

- Erdős-Rény random graph $G \sim \mathcal{G}(n, 1 / 2)$
- max clique of size $\approx 2 \log n$
- Planted k-clique: $G \sim \mathcal{G}(n, 1 / 2, k)$
- $G_{0}+K_{k}$, where $G_{0} \sim \mathcal{G}(n, 1 / 2)$

Planted Clique

- Erdős-Rény random graph $G \sim \mathcal{G}(n, 1 / 2)$
- max clique of size $\approx 2 \log n$
- Planted k-clique: $G \sim \mathcal{G}(n, 1 / 2, k)$
- $G_{0}+K_{k}$, where $G_{0} \sim \mathcal{G}(n, 1 / 2)$
- Naïve $n^{O(\log n)}$ algorithm: max clique in $G \sim \mathcal{G}(n, 1 / 2)$ of size $(2+o(1)) \log n$
- Poly-time algorithm for $k=\Omega(\sqrt{n})$
- Otherwise believed to be hard: planted clique conjecture

Planted Clique

- Erdős-Rény random graph $G \sim \mathcal{G}(n, 1 / 2)$
- max clique of size $\approx 2 \log n$
- Planted k-clique: $G \sim \mathcal{G}(n, 1 / 2, k)$
- $G_{0}+K_{k}$, where $G_{0} \sim \mathcal{G}(n, 1 / 2)$
- Naïve $n^{O(\log n)}$ algorithm: max clique in $G \sim \mathcal{G}(n, 1 / 2)$ of size $(2+o(1)) \log n$
- Poly-time algorithm for $k=\Omega(\sqrt{n})$
- Otherwise believed to be hard: planted clique conjecture

Goal

Prove the planted clique conjecture.

Planted Clique

- Erdős-Rény random graph $G \sim \mathcal{G}(n, 1 / 2)$
- max clique of size $\approx 2 \log n$
- Planted k-clique: $G \sim \mathcal{G}(n, 1 / 2, k)$
- $G_{0}+K_{k}$, where $G_{0} \sim \mathcal{G}(n, 1 / 2)$
- Naïve $n^{O(\log n)}$ algorithm: max clique in $G \sim \mathcal{G}(n, 1 / 2)$ of size $(2+o(1)) \log n$
- Poly-time algorithm for $k=\Omega(\sqrt{n})$
- Otherwise believed to be hard: planted clique conjecture

Goal

Prove the planted clique conjecture.

Planted Clique

- Erdős-Rény random graph $G \sim \mathcal{G}(n, 1 / 2)$
- max clique of size $\approx 2 \log n$
- Planted k-clique: $G \sim \mathcal{G}(n, 1 / 2, k)$
- $G_{0}+K_{k}$, where $G_{0} \sim \mathcal{G}(n, 1 / 2)$
- Naïve $n^{O(\log n)}$ algorithm: max clique in $G \sim \mathcal{G}(n, 1 / 2)$ of size $(2+o(1)) \log n$
- Poly-time algorithm for $k=\Omega(\sqrt{n})$
- Otherwise believed to be hard: planted clique conjecture

Goal

Prove the planted clique conjecture for bounded computational models.

Planted Clique

- Erdős-Rény random graph $G \sim \mathcal{G}(n, 1 / 2)$
- max clique of size $\approx 2 \log n$
- Planted k-clique: $G \sim \mathcal{G}(n, 1 / 2, k)$
- $G_{0}+K_{k}$, where $G_{0} \sim \mathcal{G}(n, 1 / 2)$
- Naïve $n^{O(\log n)}$ algorithm: max clique in $G \sim \mathcal{G}(n, 1 / 2)$ of size $(2+o(1)) \log n$
- Poly-time algorithm for $k=\Omega(\sqrt{n})$
- Otherwise believed to be hard: planted clique conjecture

Goal

Prove the planted clique conjecture for bounded computational models.

Planted Clique

- Erdős-Rény random graph $G \sim \mathcal{G}(n, 1 / 2)$
- max clique of size $\approx 2 \log n$
- Planted k-clique: $G \sim \mathcal{G}(n, 1 / 2, k)$
- $G_{0}+K_{k}$, where $G_{0} \sim \mathcal{G}(n, 1 / 2)$
- Naïve $n^{O(\log n)}$ algorithm: max clique in $G \sim \mathcal{G}(n, 1 / 2)$ of size $(2+o(1)) \log n$
- Poly-time algorithm for $k=\Omega(\sqrt{n})$
- Otherwise believed to be hard: planted clique conjecture

Goal

Prove the planted clique conjecture for bounded computational models.

Our Results

Our Results

Theorem (informal)

Algorithms based on unary linear programming require time $n^{\Omega(\log n)}$ to distinguish a graph sampled from $\mathcal{G}(n, 1 / 2)$ versus the planted distribution $\mathcal{G}\left(n, 1 / 2, n^{1 / 100}\right)$.

Our Results

Theorem (informal)

Algorithms based on unary linear programming require time $n^{\Omega(\log n)}$ to distinguish a graph sampled from $\mathcal{G}(n, 1 / 2)$ versus the planted distribution $\mathcal{G}\left(n, 1 / 2, n^{1 / 100}\right)$.

Show result through proof complexity:

- Trace of algorithm is proof of output
- Show proofs based on unary linear programming need to be long

Our Results

Theorem (informal)

Algorithms based on unary linear programming require time $n^{\Omega(\log n)}$ to distinguish a graph sampled from $\mathcal{G}(n, 1 / 2)$ versus the planted distribution $\mathcal{G}\left(n, 1 / 2, n^{1 / 100}\right)$.

Show result through proof complexity:

- Trace of algorithm is proof of output
- Show proofs based on unary linear programming need to be long

Boils down to a size lower bound in unary Sherali-Adams

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why Sum-of-Squares?

- Optimal under Unique Games Conjecture for many optimization problems
- Captures best algos for clique

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why Sum-of-Squares?

- Optimal under Unique Games Conjecture for many optimization problems
- Captures best algos for clique

$\square n^{\Omega(\log n)}$ size lower bounds

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why Sum-of-Squares?

- Optimal under Unique Games Conjecture for many optimization problems
- Captures best algos for clique

$\square n^{\Omega(\log n)}$ size lower bounds

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why Sum-of-Squares?

- Optimal under Unique Games Conjecture for many optimization problems
- Captures best algos for clique

$\square n^{\Omega(\log n)}$ size lower bounds

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why Sum-of-Squares?

- Optimal under Unique Games Conjecture for many optimization problems
- Captures best algos for clique

$\square n^{\Omega(\log n)}$ size lower bounds

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Results of similar flavor:

- Monotone \& bounded depth circuits
[Rossman08,Rossman10]
- Resolution:
- non-tight lower bounds
[BIS07,Pang21]
- weak encoding
[LPRT17,DGGM20]
- Degree lower bounds for SoS
[MPW15,...,BHKKMP19,Pang21]
$n^{\Omega(\log n)}$ size lower bounds
}

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why is progress so slow?

Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why is progress so slow?

- We have basically one way to prove size lower bounds: restrictions
- Usually gives size lower bounds $\exp (\Omega$ (degree lower bound $))$

[^0]
Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why is progress so slow?

- We have basically one way to prove size lower bounds: restrictions
- Usually gives size lower bounds $\exp (\Omega($ degree lower bound $))$
- $O(\log n)$ degree upper bound

[^1]
Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why is progress so slow?

- We have basically one way to prove size lower bounds: restrictions
- Usually gives size lower bounds $\exp (\Omega($ degree lower bound $))$
- $O(\log n)$ degree upper bound
- Want: $n^{\Omega(\log n)}$ size lower bound

[^2]
Context \& Previous Results

Claim: " $G \sim \mathcal{G}(n, 1 / 2)$ contains a clique of size $k=n^{1 / 100 "}$

Why is progress so slow?

- We have basically one way to prove size lower bounds: restrictions
- Usually gives size lower bounds $\exp (\Omega($ degree lower bound $))$
- $O(\log n)$ degree upper bound
- Want: $n^{\Omega(\log n)}$ size lower bound
- Seems to require new techniques...

[^3]
Clique Formula \& unary Sherali-Adams

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each
- Boolean variables x_{v} and \bar{x}_{v} for each vertex $\Leftrightarrow x_{v}=1$ iff v in k-clique

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each
- Boolean variables x_{v} and \bar{x}_{v} for each vertex $\Leftrightarrow x_{v}=1$ iff v in k-clique
- Boolean axioms $y(1-y)=0$
- Negation axioms $1-y=\bar{y}$

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each
- Boolean variables x_{v} and \bar{x}_{v} for each vertex $\Leftrightarrow x_{v}=1$ iff v in k-clique
- Boolean axioms $y(1-y)=0$
- Block axioms $\sum_{v \in V_{i}} x_{v}=1$
- Negation axioms $1-y=\bar{y}$
- Edge axioms $x_{u} x_{v}=0$ for $\{u, v\} \notin E(G)$

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each
- Boolean variables x_{v} and \bar{x}_{v} for each vertex $\Leftrightarrow x_{v}=1$ iff v in k-clique
- Boolean axioms $y(1-y)=0$
- Block axioms $\sum_{v \in V_{i}} x_{v}=1$
- Negation axioms $1-y=\bar{y}$
- Edge axioms $x_{u} x_{v}=0$ for $\{u, v\} \notin E(G)$

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each
- Boolean variables x_{v} and \bar{x}_{v} for each vertex $\Leftrightarrow x_{v}=1$ iff v in k-clique
- Boolean axioms $y(1-y)=0$
- Block axioms $\sum_{v \in V_{i}} x_{v}=1$
- Negation axioms $1-y=\bar{y}$
- Edge axioms $x_{u} x_{v}=0$ for $\{u, v\} \notin E(G)$

Clique Formula: Block Encoding

Encode claim k-partite graph G contains a k-clique as the polynomial system clique (G, k)

- k sets of vertices V_{1}, \ldots, V_{k} of n vertices each
- Boolean variables x_{v} and \bar{x}_{v} for each vertex $\Leftrightarrow x_{v}=1$ iff v in k-clique
- Boolean axioms $y(1-y)=0$
- Block axioms $\sum_{v \in V_{i}} x_{v}=1$
- Negation axioms $1-y=\bar{y}$
- Edge axioms $x_{u} x_{v}=0$ for $\{u, v\} \notin E(G)$

clique (G, k) sat if and only if there is a k-clique with a single vertex per block

The Unary Sherali-Adams Proof System

- Boolean variables $x_{1}, \ldots, x_{m}, \bar{x}_{1}, \ldots, \bar{x}_{m}$
- Polynomial system $\mathcal{P}=\left\{p_{1}=0, \ldots, p_{m}=0\right\}$ over $\mathbb{R}[x]$

The Unary Sherali-Adams Proof System

- Boolean variables $x_{1}, \ldots, x_{m}, \bar{x}_{1}, \ldots, \bar{x}_{m}$
- Polynomial system $\mathcal{P}=\left\{p_{1}=0, \ldots, p_{m}=0\right\}$ over $\mathbb{R}[x]$
- A unary Sherali-Adams refutation of \mathcal{P} is a polynomial of the form

$$
\sum_{i \in[m]} q_{i} p_{i}+\sum_{\substack{A, B \subseteq[n] \\ c_{A, B} \geq 0}} c_{A, B} \prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}=-M
$$

for integer $M, c_{A, B} \geq 0$ and $q_{i} \in \mathbb{Z}[x]$

The Unary Sherali-Adams Proof System

- Boolean variables $x_{1}, \ldots, x_{m}, \bar{x}_{1}, \ldots, \bar{x}_{m}$
- Polynomial system $\mathcal{P}=\left\{p_{1}=0, \ldots, p_{m}=0\right\}$ over $\mathbb{R}[x]$
- A unary Sherali-Adams refutation of \mathcal{P} is a polynomial of the form

$$
\sum_{i \in[m]} q_{i} p_{i}+\sum_{\substack{A, B \subseteq[n] \\ c_{A, B} \geq 0}} c_{A, B} \prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}=-M
$$

for integer $M, c_{A, B} \geq 0$ and $q_{i} \in \mathbb{Z}[x]$

- The size of such a refutation is the sum of the magnitude of all coefficients

Our Result (Formal)

- Let $\mathcal{G}(n, k, p)$ be distribution over k-partite graphs, partitions of size n, include edge $e=\{u, v\}$ with probability p iff u, v in distinct parts

Our Result (Formal)

- Let $\mathcal{G}(n, k, p)$ be distribution over k-partite graphs, partitions of size n, include edge $e=\{u, v\}$ with probability p iff u, v in distinct parts

Theorem (Formal)

Let $G \sim \mathcal{G}(n, k, p)$ with $p \leq 1 / 2$ and denote by D the \max clique size of G.

Our Result (Formal)

- Let $\mathcal{G}(n, k, p)$ be distribution over k-partite graphs, partitions of size n, include edge $e=\{u, v\}$ with probability p iff u, v in distinct parts

Theorem (Formal)

Let $G \sim \mathcal{G}(n, k, p)$ with $p \leq 1 / 2$ and denote by D the \max clique size of G. Then, w.h.p., unary Sherali-Adams requires size $n^{\Omega(D)}$ to refute clique $\left(G, n^{1 / 100}\right)$.

Our Result (Formal)

- Let $\mathcal{G}(n, k, p)$ be distribution over k-partite graphs, partitions of size n, include edge $e=\{u, v\}$ with probability p iff u, v in distinct parts

Theorem (Formal)

Let $G \sim \mathcal{G}(n, k, p)$ with $p \leq 1 / 2$ and denote by D the \max clique size of G. Then, w.h.p., unary Sherali-Adams requires size $n^{\Omega(D)}$ to refute clique $\left(G, n^{1 / 100}\right)$.

Today: only $p=1 / 2$ and hence $D \approx 2 \log n$

Proof Ideas

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}
- Lower bound size by duality: craft a δ-pseudo-measure μ for \mathcal{P} which is linear,

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}
- Lower bound size by duality: craft a δ-pseudo-measure μ for \mathcal{P} which is linear,
- almost non-negative: for monomials $m=\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}$

$$
\mu(m) \geq-\delta
$$

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}
- Lower bound size by duality: craft a δ-pseudo-measure μ for \mathcal{P} which is linear,
- almost non-negative: for monomials $m=\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}$

$$
\mu(m) \geq-\delta
$$

- small on axioms: for all monomials m, axioms $p \in \mathcal{P}$

$$
|\mu(m \cdot p)| \leq \delta
$$

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}
- Lower bound size by duality: craft a δ-pseudo-measure μ for \mathcal{P} which is linear,
- almost non-negative: for monomials $m=\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}$

$$
\mu(m) \geq-\delta
$$

- small on axioms: for all monomials m, axioms $p \in \mathcal{P}$

$$
|\mu(m \cdot p)| \leq \delta
$$

- Implies a $\mu(1) / \delta$ unary Sherali-Adams size lower bound to refute \mathcal{P} :

$$
\sum_{p_{i} \in \mathcal{P}} \mu\left(q_{i} p_{i}\right)+\sum_{\substack{A, B \subseteq[n] \\ c_{A, B} \geq 0}} c_{A, B} \mu\left(\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}\right)=-\mu(M)
$$

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}
- Lower bound size by duality: craft a δ-pseudo-measure μ for \mathcal{P} which is linear,
- almost non-negative: for monomials $m=\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}$

$$
\mu(m) \geq-\delta
$$

- small on axioms: for all monomials m, axioms $p \in \mathcal{P}$

$$
|\mu(m \cdot p)| \leq \delta
$$

- Implies a $\mu(1) / \delta$ unary Sherali-Adams size lower bound to refute \mathcal{P} :

$$
\sum_{p_{i} \in \mathcal{P}} \sum_{m \in q_{i}} \underbrace{c_{m} \mu\left(m \cdot p_{i}\right)}_{\geq-\left|c_{m}\right| \delta}+\sum_{\substack{A, B \subseteq[n] \\ c_{A, B} \geq 0}} c_{A, B} \mu\left(\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}\right)=-\mu(M)
$$

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}
- Lower bound size by duality: craft a δ-pseudo-measure μ for \mathcal{P} which is linear,
- almost non-negative: for monomials $m=\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}$

$$
\mu(m) \geq-\delta
$$

- small on axioms: for all monomials m, axioms $p \in \mathcal{P}$

$$
|\mu(m \cdot p)| \leq \delta
$$

- Implies a $\mu(1) / \delta$ unary Sherali-Adams size lower bound to refute \mathcal{P} :

$$
\sum_{p_{i} \in \mathcal{P}} \sum_{m \in q_{i}} \underbrace{c_{m} \mu\left(m \cdot p_{i}\right)}_{\geq-\left|c_{m}\right| \delta}+\sum_{\substack{A, B \subseteq[n] \\ c_{A, B} \geq 0}} c_{A, B} \mu\left(\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}\right)=-\mu(M)
$$

How to Lower Bound Magnitude of Coefficients

- Write LP to search for min size unary Sherali-Adams refutation of \mathcal{P}
- Lower bound size by duality: craft a δ-pseudo-measure μ for \mathcal{P} which is linear,
- almost non-negative: for monomials $m=\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}$

$$
\mu(m) \geq-\delta
$$

- small on axioms: for all monomials m, axioms $p \in \mathcal{P}$

$$
|\mu(m \cdot p)| \leq \delta
$$

- Implies a $\mu(1) / \delta$ unary Sherali-Adams size lower bound to refute \mathcal{P} :

$$
\sum_{p_{i} \in \mathcal{P}} \sum_{m \in q_{i}} \underbrace{c_{m} \mu\left(m \cdot p_{i}\right)}_{\geq-\left|c_{m}\right| \delta}+\sum_{\substack{A, B \subseteq[n] \\ c_{A, B} \geq 0}} c_{A, B} \mu\left(\prod_{i \in A} x_{i} \prod_{j \in B} \bar{x}_{j}\right)=\underbrace{-\mu(M)}_{\leq-\mu(1)}
$$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n), \text { while } \mu(1) \approx 1}
$$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n), \text { while } \mu(1) \approx 1}
$$

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1
- Intuition: $\mu(m)$ should be contribution of m towards contradiction

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1
- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of assignments m rules out

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1
- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1
- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1
- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n), \text { while } \mu(1) \approx 1}
$$

Think μ as "progress measure" on monomials:

- small on axioms
- large on 1

- Intuition: $\mu(m)$ should be contribution of m towards contradiction
- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1$ \& $\mu(m) \geq 0$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1$ \& $\mu(m) \geq 0$

!	!	\bullet \vdots \vdots \vdots \vdots	!	!	:	:	!
V_{1}	V_{2}	V_{3}					V_{k}

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1 \& \mu(m) \geq 0$
- $\mu\left(\sum_{v \in V_{1}} x_{v}-1\right)=0$

!	!	\bullet \vdots \vdots \vdots \vdots	!	!	:	:	!
V_{1}	V_{2}	V_{3}					V_{k}

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1 \& \mu(m) \geq 0$
- $\mu\left(\sum_{v \in V_{1}} x_{v}-1\right)=0$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1 \& \mu(m) \geq 0$
- $\mu\left(\sum_{v \in V_{1}} x_{v}-1\right)=0$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1 \& \mu(m) \geq 0$
- $\mu\left(\sum_{v \in V_{1}} x_{v}-1\right)=0$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1 \& \mu(m) \geq 0$
- $\mu\left(\sum_{v \in V_{1}} x_{v}-1\right)=0$
- $\mu\left(x_{u} x_{v}\right)=n^{-2}$

Pseudo-Measure: Construction, Failed Attempt I

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n)}, \text { while } \mu(1) \approx 1
$$

- Idea 1: Let $\mu(m)$ be the fraction of relevant assignments m rules out
- For tuple t relevant assignment ρ_{t} is $\rho_{t}\left(x_{v}\right)=1$ if $v \in t$ and 0 otherwise
- Associate m with rectangle $Q(m)$ consisting of tuples t such that $\rho_{t}(m)=1$
- Attempt 1: $\mu(m)=\frac{|Q(m)|}{n^{k}}$
- $\mu(1)=1 \& \mu(m) \geq 0$
- $\mu\left(\sum_{v \in V_{1}} x_{v}-1\right)=0$
- $\mu\left(x_{u} x_{v}\right)=n^{-2}$

Pseudo-Measure: Construction, Failed Attempt II

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

$$
\text { linear operator } \mu \text { such that } \mu(m) \geq-n^{-\Omega(\log n)} \text { and }|\mu(m \cdot p)| \leq n^{-\Omega(\log n), \text { while } \mu(1) \approx 1}
$$

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$

Pseudo-Measure: Construction, Failed Attempt II

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

Pseudo-Measure: Construction, Failed Attempt II

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\left.\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{2} \begin{array}{l}
k \\
2
\end{array}\right) \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- In expectation over $G \sim \mathcal{G}(n, k, 1 / 2)$ all satisfied:

Pseudo-Measure: Construction, Failed Attempt II

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\left.\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{2} \begin{array}{l}
k \\
2
\end{array}\right) \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- In expectation over $G \sim \mathcal{G}(n, k, 1 / 2)$ all satisfied:
- $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=n^{-k} \sum_{t \in Q(1)} 2^{\binom{k}{2}} \cdot \mathbb{E}_{G}\left[\mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)\right]=1$

Pseudo-Measure: Construction, Failed Attempt II

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n),}\mathrm{ while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\left.\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{2} \begin{array}{l}
k \\
2
\end{array}\right) \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- In expectation over $G \sim \mathcal{G}(n, k, 1 / 2)$ all satisfied:
- $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=n^{-k} \sum_{t \in Q(1)} 2^{\binom{k}{2}} \cdot \mathbb{E}_{G}\left[\mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)\right]=1$
- non-neg \& all axioms are 0

Pseudo-Measure: Construction, Failed Attempt II

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ , while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\left.\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{2} \begin{array}{l}
k \\
2
\end{array}\right) \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- In expectation over $G \sim \mathcal{G}(n, k, 1 / 2)$ all satisfied:
- $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=n^{-k} \sum_{t \in Q(1)} 2^{\binom{k}{2}} \cdot \mathbb{E}_{G}\left[\mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)\right]=1$
- non-neg \& all axioms are 0

Problem: no k-cliques in the graph!

Pseudo-Measure: Construction, Successful Attempt

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ , while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\left.\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{2} \begin{array}{c}
k \\
2
\end{array}\right) \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:

Pseudo-Measure: Construction, Successful Attempt

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ , while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:
- Choose measure μ_{0} that satisfies required properties in expectation

Pseudo-Measure: Construction, Successful Attempt

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for $\operatorname{clique}(G, k)$, where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ , while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:
- Choose measure μ_{0} that satisfies required properties in expectation
- Write μ_{0} in Fourier basis and truncate to reduce variance

Pseudo-Measure: Construction, Successful Attempt

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

```
linear operator }\mu\mathrm{ such that }\mu(m)\geq-\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ and }|\mu(m\cdotp)|\leq\mp@subsup{n}{}{-\Omega(\operatorname{log}n)}\mathrm{ , while }\mu(1)\approx
```

- Idea 2: Let us associate a monomial m with a subset of $Q(m)$
- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:
- Choose measure μ_{0} that satisfies required properties in expectation
- Write μ_{0} in Fourier basis and truncate to reduce variance
- Hope: all properties satisfied as everything concentrates around expected value

Interlude: Fourier Characters

Fourier Characters

- Character χ_{e} for each potential edge $e=\{u, v\}$, i.e., if u, v in distinct blocks,

$$
\chi_{e}(G)= \begin{cases}1 & \text { if } e \in E(G), \text { and } \\ -1 & \text { if } e \notin E(G)\end{cases}
$$

- For set E of potential edges we let $\chi_{E}(G)=\prod_{e \in E} \chi_{e}(G)$. In particular $\chi_{\emptyset}(G)=1$.

$$
\left.\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{2} \begin{array}{c}
k \\
2
\end{array}\right) \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

Fourier Characters

- Character χ_{e} for each potential edge $e=\{u, v\}$, i.e., if u, v in distinct blocks,

$$
\chi_{e}(G)= \begin{cases}1 & \text { if } e \in E(G), \text { and } \\ -1 & \text { if } e \notin E(G)\end{cases}
$$

- For set E of potential edges we let $\chi_{E}(G)=\prod_{e \in E} \chi_{e}(G)$. In particular $\chi_{\emptyset}(G)=1$.

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G)
$$

Fourier Characters

- Character χ_{e} for each potential edge $e=\{u, v\}$, i.e., if u, v in distinct blocks,

$$
\chi_{e}(G)= \begin{cases}1 & \text { if } e \in E(G), \text { and } \\ -1 & \text { if } e \notin E(G)\end{cases}
$$

- For set E of potential edges we let $\chi_{E}(G)=\prod_{e \in E} \chi_{e}(G)$. In particular $\chi_{\emptyset}(G)=1$.

$$
\begin{aligned}
\mu_{0}(m) & =n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G) \\
& =n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
\end{aligned}
$$

Fourier Characters

- Character χ_{e} for each potential edge $e=\{u, v\}$, i.e., if u, v in distinct blocks,

$$
\chi_{e}(G)= \begin{cases}1 & \text { if } e \in E(G), \text { and } \\ -1 & \text { if } e \notin E(G)\end{cases}
$$

- For set E of potential edges we let $\chi_{E}(G)=\prod_{e \in E} \chi_{e}(G)$. In particular $\chi_{\emptyset}(G)=1$.

$$
\begin{aligned}
\mu_{0}(m) & =n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G) \\
& =n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
\end{aligned}
$$

Fourier Characters

- Character χ_{e} for each potential edge $e=\{u, v\}$, i.e., if u, v in distinct blocks,

$$
\chi_{e}(G)= \begin{cases}1 & \text { if } e \in E(G), \text { and } \\ -1 & \text { if } e \notin E(G)\end{cases}
$$

- For set E of potential edges we let $\chi_{E}(G)=\prod_{e \in E} \chi_{e}(G)$. In particular $\chi_{\emptyset}(G)=1$.

$$
\begin{aligned}
\mu_{0}(m) & =n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G) \\
& =n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
\end{aligned}
$$

Fourier Characters

- Character χ_{e} for each potential edge $e=\{u, v\}$, i.e., if u, v in distinct blocks,

$$
\chi_{e}(G)= \begin{cases}1 & \text { if } e \in E(G), \text { and } \\ -1 & \text { if } e \notin E(G)\end{cases}
$$

- For set E of potential edges we let $\chi_{E}(G)=\prod_{e \in E} \chi_{e}(G)$. In particular $\chi_{\emptyset}(G)=1$.

$$
\begin{aligned}
\mu_{0}(m) & =n^{-k} \sum_{t \in Q(m)} 2^{\binom{k}{2}} \mathbb{1}_{\{\mathrm{t} \text { is clique }\}}(G) \\
& =n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
\end{aligned}
$$

$$
\chi_{E}(G)+\chi_{E \cup e}(G)=0
$$

Fourier Characters: Pattern Graphs

Convenient to identify edge sets that "look the same"

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
$$

Fourier Characters: Pattern Graphs

Convenient to identify edge sets that "look the same"

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
$$

Fourier Characters: Pattern Graphs

Convenient to identify edge sets that "look the same"

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
$$

Fourier Characters: Pattern Graphs

Convenient to identify edge sets that "look the same"

$$
\mu_{0}(m)=n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G)
$$

Fourier Characters: Pattern Graphs

Convenient to identify edge sets that "look the same"

$$
\begin{aligned}
\mu_{0}(m) & =n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G) \\
& =n^{-k} \sum_{t \in Q(m)} \sum_{H \subseteq\binom{k}{2}} \chi_{H(t)}(G)
\end{aligned}
$$

Fourier Characters: Pattern Graphs

Convenient to identify edge sets that "look the same"

$$
\begin{aligned}
\mu_{0}(m) & =n^{-k} \sum_{t \in Q(m)} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G) \\
& =n^{-k} \sum_{t \in Q(m)} \sum_{H \subseteq\binom{k}{2}} \chi_{H(t)}(G) \\
& =n^{-k} \sum_{H \subseteq\binom{k}{2}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
\end{aligned}
$$

Back to Pseudo-Calibration

Pseudo-Measure by Pseudo-Calibration

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{H \subseteq\binom{k}{2}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:
- Choose measure μ_{0} that satisfies required properties in expectation
- Write μ_{0} in Fourier basis and truncate to reduce variance
- Hope: all properties satisfied as everything concentrates around expected value

Pseudo-Measure by Pseudo-Calibration

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{H \subseteq\binom{k}{2}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:
- Choose measure μ_{0} that satisfies required properties in expectation
- Write μ_{0} in Fourier basis and truncate to reduce variance
- Hope: all properties satisfied as everything concentrates around expected value

Can truncation even ensure that $\mu(1) \approx 1$?

Pseudo-Measure by Pseudo-Calibration

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{H \subseteq\binom{k}{2}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:
- Choose measure μ_{0} that satisfies required properties in expectation
- Write μ_{0} in Fourier basis and truncate to reduce variance
- Hope: all properties satisfied as everything concentrates around expected value

Can truncation even ensure that $\mu(1) \approx 1$?

$$
\text { Yes - only allow } H=\emptyset!
$$

Pseudo-Measure by Pseudo-Calibration

Goal

Construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique (G, k), where $G \sim \mathcal{G}(n, k, 1 / 2)$ and $k \leq n^{0.1}$

- Attempt 2: cliques in $Q(m)$

$$
\mu_{0}(m)=n^{-k} \sum_{H \subseteq\binom{k}{2}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

- Tweak μ_{0} by Pseudo-Calibration to obtain a pseudo-measure:
- Choose measure μ_{0} that satisfies required properties in expectation
- Write μ_{0} in Fourier basis and truncate to reduce variance
- Hope: all properties satisfied as everything concentrates around expected value

Can truncation even ensure that $\mu(1) \approx 1$?

$$
\text { Yes - only allow } H=\emptyset!\text { That was attempt } 1 \ldots
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\mathbb{E}\left[\mu_{0}^{2}(1)\right]=n^{-2 k} \sum_{H, H^{\prime} \subseteq\binom{k}{2}} \sum_{t, t^{\prime}} \mathbb{E}\left[\chi_{H(t)}(G) \chi_{H^{\prime}\left(t^{\prime}\right)}(G)\right]
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\mathbb{E}\left[\mu_{0}^{2}(1)\right]=n^{-2 k} \sum_{H, H^{\prime} \subseteq\binom{k}{2}} \sum_{t, t^{\prime}} \mathbb{E}\left[\chi_{H(t)}(G) \chi_{H^{\prime}\left(t^{\prime}\right)}(G)\right]
$$

$$
\begin{aligned}
& \mathbb{E}_{G}\left[\chi_{e}(G)\right]=0 \\
& \mathbb{E}_{G}\left[\chi_{e}^{2}(G)\right]=1
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\mathbb{E}\left[\mu_{0}^{2}(1)\right]=n^{-2 k} \sum_{H, H^{\prime} \subseteq\binom{k}{2}} \sum_{t, t^{\prime}} \mathbb{E}\left[\chi_{H(t)}(G) \chi_{H^{\prime}\left(t^{\prime}\right)}(G)\right]
$$

$$
\begin{aligned}
& \mathbb{E}_{G}\left[\chi_{e}(G)\right]=0 \\
& \mathbb{E}_{G}\left[\chi_{e}^{2}(G)\right]=1
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\mathbb{E}\left[\mu_{0}^{2}(1)\right]=n^{-2 k} \sum_{H \subseteq\binom{k}{2}} \sum_{t, t^{\prime}} \mathbb{E}\left[\chi_{H(t)}(G) \chi_{H\left(t^{\prime}\right)}(G)\right]
$$

$$
\begin{aligned}
& \mathbb{E}_{G}\left[\chi_{e}(G)\right]=0 \\
& \mathbb{E}_{G}\left[\chi_{e}^{2}(G)\right]=1
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\mathbb{E}\left[\mu_{0}^{2}(1)\right]=n^{-2 k} \sum_{H \subseteq\binom{k}{2}} \sum_{t, t^{\prime}} \mathbb{E}\left[\chi_{H(t)}(G) \chi_{H\left(t^{\prime}\right)}(G)\right]
$$

$$
\begin{aligned}
& \mathbb{E}_{G}\left[\chi_{e}(G)\right]=0 \\
& \mathbb{E}_{G}\left[\chi_{e}^{2}(G)\right]=1
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\begin{aligned}
\mathbb{E}\left[\mu_{0}^{2}(1)\right] & =n^{-2 k} \sum_{H \subseteq\binom{k}{2}} \sum_{t, t^{\prime}} \mathbb{E}\left[\chi_{H(t)}(G) \chi_{H\left(t^{\prime}\right)}(G)\right] \\
& =n^{-2 k} \sum_{H \subseteq\binom{k}{2}}\left|\left\{\left(t, t^{\prime}\right): t_{V(E(H))}=t_{V(E(H))}^{\prime}\right\}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}_{G}\left[\chi_{e}(G)\right]=0 \\
& \mathbb{E}_{G}\left[\chi_{e}^{2}(G)\right]=1
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\begin{aligned}
\mathbb{E}\left[\mu_{0}^{2}(1)\right] & =n^{-2 k} \sum_{H \subseteq\binom{k}{2}} \sum_{t, t^{\prime}} \mathbb{E}\left[\chi_{H(t)}(G) \chi_{H\left(t^{\prime}\right)}(G)\right] \\
& =n^{-2 k} \sum_{H \subseteq\binom{k}{2}}\left|\left\{\left(t, t^{\prime}\right): t_{V(E(H))}=t_{V(E(H))}^{\prime}\right\}\right| \\
& =n^{-2 k} \sum_{H \subseteq\binom{k}{2}} n^{|V(E(H))|+2(k-|V(E(H))|)} \\
& =\sum_{H \subseteq\binom{k}{2}} n^{-|V(E(H))|}
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\mathbb{E}\left[\mu_{0}^{2}(1)\right]=\sum_{H \subseteq\binom{k}{2}} n^{-|V(E(H))|}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\begin{aligned}
\mathbb{E}\left[\mu_{0}^{2}(1)\right] & =\sum_{H \subseteq\binom{k}{2}} n^{-|V(E(H))|} \\
& =\sum_{i=0}^{k} \sum_{\substack{H \subseteq\left(\begin{array}{l}
k \\
2
\end{array}\right) \\
|V(E(H))|=i}} n^{-i}
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\begin{aligned}
\mathbb{E}\left[\mu_{0}^{2}(1)\right]= & \sum_{H \subseteq\binom{k}{2}} n^{-|V(E(H))|} \\
= & \sum_{i=0}^{k} \sum_{\substack{H \subseteq(k \\
2 \\
|V(E(H))|=i}} n^{-i} \\
\approx & 1+\sum_{i=1}^{k} n^{-i} \cdot\binom{k}{i} 2^{\binom{i}{2}}
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\begin{aligned}
\mathbb{E}\left[\mu_{0}^{2}(1)\right] & =\sum_{H \subseteq\binom{k}{2}} n^{-|V(E(H))|} \\
& =\sum_{i=0}^{k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
|V(E(H))|=i}} n^{-i} \\
& \approx 1+\sum_{i=1}^{k} n^{-i} \cdot\binom{k}{i} 2^{\binom{i}{2}} \\
& \approx 1+\sum_{i=1}^{k} \exp (-i(\log n-\log k-i))
\end{aligned}
$$

Pseudo-Calibration: $2^{\text {nd }}$ Moment Calculation

Let us analyze the $2^{\text {nd }}$ moment of $\mu_{0}(1)$; recall that $\mathbb{E}_{G}\left[\mu_{0}(1)\right]=1$

$$
\begin{aligned}
\mathbb{E}\left[\mu_{0}^{2}(1)\right] & =\sum_{H \subseteq\binom{k}{2}} n^{-|V(E(H))|} \\
& =\sum_{i=0}^{k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
|V(E(H))|=i}} n^{-i} \\
& \approx 1+\sum_{i=1}^{k} n^{-i} \cdot\binom{k}{i} 2^{\binom{i}{2}} \\
& \approx 1+\sum_{i=1}^{k} \exp (-i(\log n-\log k-i))
\end{aligned}
$$

$=1+n^{-\Omega(1)}$, if only sum H with $|V(E(H))| \leq \eta \log n$.

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms
- Careful choice of truncation by vertex cover:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
\mathrm{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

where $d=\eta \log n$ for $\eta>0$ small

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms
- Careful choice of truncation by vertex cover:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
\operatorname{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

where $d=\eta \log n$ for $\eta>0$ small

- Same calculation as on previous slide shows that $\mu(1)=1 \pm n^{-\Omega(1)}$ with high probability

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms
- Careful choice of truncation by vertex cover:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
\mathrm{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

where $d=\eta \log n$ for $\eta>0$ small

- Same calculation as on previous slide shows that $\mu(1)=1 \pm n^{-\Omega(1)}$ with high probability
- Remains to argue that

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms
- Careful choice of truncation by vertex cover:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
\operatorname{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

where $d=\eta \log n$ for $\eta>0$ small

- Same calculation as on previous slide shows that $\mu(1)=1 \pm n^{-\Omega(1)}$ with high probability
- Remains to argue that
- μ is small on edge-axioms: $\quad\left|\mu\left(m \cdot x_{u} x_{v}\right)\right| \leq n^{-\Omega(\log n)}$

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms
- Careful choice of truncation by vertex cover:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
\operatorname{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

where $d=\eta \log n$ for $\eta>0$ small

- Same calculation as on previous slide shows that $\mu(1)=1 \pm n^{-\Omega(1)}$ with high probability
- Remains to argue that
- μ is small on edge-axioms:

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{u} x_{v}\right)\right| & \leq n^{-\Omega(\log n)} \\
\mu(m) & \geq-n^{-\Omega(\log n)}
\end{aligned}
$$

- μ is basically non-negative:

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms
- Careful choice of truncation by vertex cover:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
\operatorname{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

where $d=\eta \log n$ for $\eta>0$ small

- Same calculation as on previous slide shows that $\mu(1)=1 \pm n^{-\Omega(1)}$ with high probability
- Remains to argue that
- μ is small on edge-axioms:

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{u} x_{v}\right)\right| & \leq n^{-\Omega(\log n)} \\
\mu(m) & \geq-n^{-\Omega(\log n)}
\end{aligned}
$$

Pseudo-Measure: Actual Definition

- Truncating μ_{0} to obtain μ guarantees $\mu(1) \approx 1$
- Tension: ensure μ remains basically non-negative and small on edge axioms
- Careful choice of truncation by vertex cover:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{c}
k \\
2
\end{array}\right) \\
\operatorname{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

where $d=\eta \log n$ for $\eta>0$ small

- Same calculation as on previous slide shows that $\mu(1)=1 \pm n^{-\Omega(1)}$ with high probability
- Remains to argue that
- μ is small on edge-axioms:

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{u} x_{v}\right)\right| & \leq n^{-\Omega(\log n)} \\
\mu(m) & \geq-n^{-\Omega(\log n)}
\end{aligned}
$$

- μ is basically non-negative:

Edge Axioms

Edge Axioms

- m monomial; $e=\left\{v_{1}, v_{2}\right\} \notin E(G)$ for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$; edge axiom $x_{v_{1}} x_{v_{2}}$
- Write $Q=Q\left(m \cdot x_{v_{1}} x_{v_{2}}\right)$
- Want to show that

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| \leq n^{-\Omega(\log n)}
$$

Edge Axioms

- monomial; $e=\left\{v_{1}, v_{2}\right\} \notin E(G)$ for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$; edge axiom $x_{v_{1}} x_{v_{2}}$
- Write $Q=Q\left(m \cdot x_{v_{1}} x_{v_{2}}\right)$
- Want to show that

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| \leq n^{-\Omega(\log n)}
$$

$$
\begin{aligned}
\chi_{E}(G)+\chi_{E \cup e}(G) & =\chi_{E}(G)+\chi_{E}(G) \cdot \chi_{e}(G) \\
& =\chi_{E}(G)-\chi_{E}(G)=0
\end{aligned}
$$

Edge Axioms

- monomial; $e=\left\{v_{1}, v_{2}\right\} \notin E(G)$ for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$; edge axiom $x_{v_{1}} x_{v_{2}}$
- Write $Q=Q\left(m \cdot x_{v_{1}} x_{v_{2}}\right)$
- Want to show that

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| \leq n^{-\Omega(\log n)}
$$

$$
\begin{aligned}
\chi_{E}(G)+\chi_{E \cup e}(G) & =\chi_{E}(G)+\chi_{E}(G) \cdot \chi_{e}(G) \\
& =\chi_{E}(G)-\chi_{E}(G)=0
\end{aligned}
$$

$$
\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)=n^{-k} \sum_{\substack{H: \\ \operatorname{vc}(H) \leq d}} \sum_{t \in Q} \chi_{H(t)}(G)
$$

Edge Axioms

- monomial; $e=\left\{v_{1}, v_{2}\right\} \notin E(G)$ for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$; edge axiom $x_{v_{1}} x_{v_{2}}$
- Write $Q=Q\left(m \cdot x_{v_{1}} x_{v_{2}}\right)$
- Want to show that

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| \leq n^{-\Omega(\log n)} \quad \chi_{E}(G)+\chi_{E \cup e}(G) & =\chi_{E}(G)+\chi_{E}(G) \cdot \chi_{e}(G) \\
& =\chi_{E}(G)-\chi_{E}(G)=0
\end{aligned}
$$

$$
\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)=n^{-k} \sum_{\substack{H: \\ \operatorname{vc}(H) \leq d \\\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)+\sum_{\substack{H: \\ \operatorname{vc}(H) \leq d \\\{1,2\} \in H}} \sum_{t \in Q} \chi_{H(t)}(G)
$$

Edge Axioms

- monomial; $e=\left\{v_{1}, v_{2}\right\} \notin E(G)$ for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$; edge axiom $x_{v_{1}} x_{v_{2}}$
- Write $Q=Q\left(m \cdot x_{v_{1}} x_{v_{2}}\right)$
- Want to show that

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| \leq n^{-\Omega(\log n)}
$$

$$
\begin{aligned}
\chi_{E}(G)+\chi_{E \cup e}(G) & =\chi_{E}(G)+\chi_{E}(G) \cdot \chi_{e}(G) \\
& =\chi_{E}(G)-\chi_{E}(G)=0
\end{aligned}
$$

$$
\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)=n^{-k} \sum_{\substack{H: \\ \operatorname{vc}(H)=d \\\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)
$$

Edge Axioms, Failed Attempt

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right|=n^{-k}\left|\sum_{\substack{H: \\ \operatorname{vc}(H)=d \\\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)\right|
$$

Edge Axioms, Failed Attempt

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right|=n^{-k}\left|\sum_{\substack{H: \\ \operatorname{vc}(H)=d \\\{1,2\} \notin H \\ \operatorname{vc}(H \cup\{1,2\})=d+1}} \sum_{t \in Q} \chi_{H(t)}(G)\right|
$$

Lemma

With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any H and Q that

$$
\left|\sum_{t \in Q} \chi_{H(t)}(G)\right| \leq n^{k-\mathrm{vc}(H) / 8}
$$

Edge Axioms, Failed Attempt

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right|=n^{-k}\left|\sum_{\substack{H: \\ \operatorname{vc}(H)=d \\\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)\right|
$$

Lemma

With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any H and Q that

$$
\left|\sum_{t \in Q} \chi_{H(t)}(G)\right| \leq n^{k-\mathrm{vc}(H) / 8}
$$

Edge Axioms, Failed Attempt

$$
\begin{gathered}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right|=n^{-k}\left|\sum_{\substack{H: \\
\operatorname{vc}(H)=d \\
\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)\right| \\
\leq \sum_{\substack{H: \\
\operatorname{vc}(H)=d \\
\{1,2\} \notin H \\
\operatorname{vc}(H \cup 1,2\})=d+1}} n^{-d / 8} \\
\leq 1,2\})=d+1
\end{gathered}
$$

Lemma

With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any H and Q that

$$
\left|\sum_{t \in Q} \chi_{H(t)}(G)\right| \leq n^{k-\mathrm{vc}(H) / 8}
$$

Edge Axioms, Failed Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right|=n^{-k}\left|\sum_{\substack{H: \\
\operatorname{vc}(H)=d \\
\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)\right| \\
\leq \sum_{\substack{H: \\
\operatorname{vc}(H \cup\{1,2\})=d+1 \\
\operatorname{vc}(H)=d \\
\operatorname{vc}(H \cup 2\} \notin H \\
\operatorname{vc}(1,2\})=d+1}} n^{-d / 8}
\end{aligned} \approx 2^{d k} n^{-d / 8} \approx n^{\Omega(k)}
$$

Lemma

With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any H and Q that

$$
\left|\sum_{t \in Q} \chi_{H(t)}(G)\right| \leq n^{k-\mathrm{vc}(H) / 8}
$$

Cores

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \mathrm{vc}(F)$

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \operatorname{vc}(F)$, and
- there is an edge set E_{F}^{\star} such that core $(H)=F$ iff $E(H)=E(F) \cup E$ for $E \subseteq E_{F}^{\star}$.

Cores

Definition

A vertex induced subgraph F of H is a core if any minimum vertex cover of F is also a vertex cover of H.

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \operatorname{vc}(F)$, and
- there is an edge set E_{F}^{\star} such that core $(H)=F$ iff $E(H)=E(F) \cup E$ for $E \subseteq E_{F}^{\star}$.

$$
\begin{gathered}
\text { core } \\
\operatorname{core}^{-1}(F)=\mathcal{H}(F)=\left\{H \mid E(H)=E(F) \cup E, \text { where } E \subseteq E_{F}^{\star}\right\}
\end{gathered}
$$

Back to Edge Axioms

Edge Axioms, Successful Attempt

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right|=n^{-k}\left|\sum_{\substack{H: \\ \operatorname{vc}(H)=d \\\{1,2\} \notin H \\ \operatorname{vc}(H \cup\{1,2\})=d+1}} \sum_{t \in Q} \chi_{H(t)}(G)\right|
$$

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \operatorname{vc}(F)$, and
- there is E_{F}^{\star} such that core $^{-1}(F)=\mathcal{H}(F)=\left\{H \mid E(H)=E(F) \cup E\right.$, where $\left.E \subseteq E_{F}^{\star}\right\}$.

Edge Axioms, Successful Attempt

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| \leq n^{-k} \sum_{F}\left|\sum_{t \in Q} \sum_{H \in \mathcal{H}(F)} \chi_{H(t)}(G)\right|
$$

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \operatorname{vc}(F)$, and
- there is E_{F}^{\star} such that core $^{-1}(F)=\mathcal{H}(F)=\left\{H \mid E(H)=E(F) \cup E\right.$, where $\left.E \subseteq E_{F}^{\star}\right\}$.

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F}\left|\sum_{t \in Q} \sum_{H \in \mathcal{H}(F)} \chi_{H(t)}(G)\right| \\
& \leq n^{-k} \sum_{F}\left|\sum_{t \in Q} \chi_{F(t)}(G) \sum_{E \subseteq E_{F}^{\star}} \chi_{E(t)}(G)\right|
\end{aligned}
$$

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \operatorname{vc}(F)$, and
- there is E_{F}^{\star} such that core ${ }^{-1}(F)=\mathcal{H}(F)=\left\{H \mid E(H)=E(F) \cup E\right.$, where $\left.E \subseteq E_{F}^{\star}\right\}$.

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F}\left|\sum_{t \in Q} \sum_{H \in \mathcal{H}(F)} \chi_{H(t)}(G)\right| \\
& \leq n^{-k} \sum_{F}\left|\sum_{t \in Q} \chi_{F(t)}(G) \sum_{E \subseteq E_{F}^{\star}} \chi_{E(t)}(G)\right| \\
& \leq n^{-k} \sum_{F}\left|\sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)\right|
\end{aligned}
$$

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \operatorname{vc}(F)$, and
- there is E_{F}^{\star} such that core ${ }^{-1}(F)=\mathcal{H}(F)=\left\{H \mid E(H)=E(F) \cup E\right.$, where $\left.E \subseteq E_{F}^{\star}\right\}$.

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F}\left|\sum_{t \in Q} \sum_{H \in \mathcal{H}(F)} \chi_{H(t)}(G)\right| \\
& \leq n^{-k} \sum_{F}\left|\sum_{t \in Q} \chi_{F(t)}(G) \sum_{E \subseteq E_{F}^{\star}} \chi_{E(t)}(G)\right| \\
& \leq n^{-k} \sum_{F} \mid \sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \underbrace{\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G) \mid}_{\text {let us analyze this for fixed } t_{A}}
\end{aligned}
$$

Lemma

There is a map core that sends graphs H to a core of H with the following properties. Every graph F in the image of core satisfies

- $|V(E(F))| \leq 3 \cdot \operatorname{vc}(F)$, and
- there is E_{F}^{\star} such that core $^{-1}(F)=\mathcal{H}(F)=\left\{H \mid E(H)=E(F) \cup E\right.$, where $\left.E \subseteq E_{F}^{\star}\right\}$.

Edge Axioms, Successful Attempt

- For fixed t_{A} we want to analyze

$$
\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)
$$

Edge Axioms, Successful Attempt

- For fixed t_{A} we want to analyze

$$
\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)=\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} 2^{\left|E_{F}^{\star}\right|} \cdot \mathbb{1}_{\left\{E_{F}^{\star}\left(t_{A} \cup t_{B}\right) \text { present }\right\}}(G)
$$

Edge Axioms, Successful Attempt

- For fixed t_{A} we want to analyze

$$
\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)=\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} 2^{\left|E_{F}^{\star}\right|} \cdot \mathbb{1}_{\left\{E_{F}^{\star}\left(t_{A} \cup t_{B}\right) \text { present }\right\}}(G)
$$

Edge Axioms, Successful Attempt

- For fixed t_{A} we want to analyze

$$
\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)=\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} 2^{\left|E_{F}^{\star}\right|} \cdot \mathbb{1}_{\left\{E_{F}^{\star}\left(t_{A} \cup t_{B}\right) \text { present }\right\}}(G)
$$

- Fact: common neighborhoods behave as expected in random graphs: for small tuple t, that is, $|t| \leq d$, we have

$$
\left|N^{\cap}(t) \cap V_{i}\right|=\left|\bigcap_{u \in t} N(u) \cap V_{i}\right|=\left(1 \pm n^{-1 / 5}\right)\left(\frac{1}{2}\right)^{|t|} n
$$

Edge Axioms, Successful Attempt

- For fixed t_{A} we want to analyze

$$
\begin{aligned}
\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G) & =\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} 2^{\left|E_{F}^{\star}\right|} \cdot \mathbb{1}_{\left\{E_{F}^{\star}\left(t_{A} \cup t_{B}\right) \text { present }\right\}}(G) \\
& \leq\left(\left(1+n^{-1 / 5}\right) n\right)^{k-|V(E(F))|} \leq 3 n^{k-|V(E(F))|}
\end{aligned}
$$

- Fact: common neighborhoods behave as expected in random graphs: for small tuple t, that is, $|t| \leq d$, we have

$$
\left|N^{\cap}(t) \cap V_{i}\right|=\left|\bigcap_{u \in t} N(u) \cap V_{i}\right|=\left(1 \pm n^{-1 / 5}\right)\left(\frac{1}{2}\right)^{|t|} n
$$

Edge Axioms, Successful Attempt

$$
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| \leq\left. n^{-k} \sum_{F}\right|_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \underbrace{\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G) \mid}_{\leq 3 n^{k-|V(E(F))|}}
$$

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F} \mid \sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \underbrace{\sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G) \mid}_{t_{B} \in Q_{[k] \backslash V(E(F))}} \\
& \leq\left. 3 \sum_{F} n^{-|V(E(F))|}\right|_{t_{A} \in n^{k-|V(E(F))|}} \sum_{V(E(F))} \chi_{F\left(t_{A}\right)}(G) \mid
\end{aligned}
$$

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F}\left|\sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)\right| \\
& \leq\left. 3 \sum_{F} n^{-|V(E(F))|}\right|_{t_{A} \in n_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \mid
\end{aligned}
$$

Lemma (recall)
With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any F and Q that

$$
\left|\sum_{t \in Q} \chi_{F(t)}(G)\right| \leq n^{k-\mathrm{vc}(F) / 8}
$$

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F} \mid \sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \sum_{t_{B} \in Q_{[k] \backslash V(E(F))}}^{\sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G) \mid} \\
& \leq\left. 3 \sum_{F} n^{-|V(E(F))|}\right|_{t_{A} \in n^{k-|V(E(F))|}} \sum_{V(E(F))} \chi_{F\left(t_{A}\right)}(G) \mid
\end{aligned}
$$

Lemma (recall)

With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any F and $Q_{V(E(F))}$ that

$$
\left|\sum_{t \in Q_{V(E(F))}} \chi_{F(t)}(G)\right| \leq n^{|V(E(F))|-\mathrm{vc}(F) / 8}
$$

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F}|\sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \underbrace{}_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)| \\
& \leq 3 \sum_{F} n^{-|V(E(F))|}\left|\sum_{t_{A} \in Q_{V(E(F))}|V(E(F))|} \chi_{F\left(t_{A}\right)}(G)\right| \\
& \leq 3 \sum_{F} n^{-d / 8}
\end{aligned}
$$

Lemma (recall)
With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any F and $Q_{V(E(F))}$ that

$$
\left|\sum_{t \in Q_{V(E(F))}} \chi_{F(t)}(G)\right| \leq n^{|V(E(F))|-\mathrm{vc}(F) / 8}
$$

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F}|\sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \underbrace{\leq 3 n^{k-|V(E(F))|}}_{\sum_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G) \mid}| \\
& \leq 3 \sum_{F} n^{-|V(E(F))|}\left|\sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G)\right| \\
& \leq 3 \sum_{F} n^{-d / 8} \approx 2^{3 d^{2}} n^{-d / 8}
\end{aligned}
$$

Lemma (recall)
With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any F and $Q_{V(E(F))}$ that

$$
\left|\sum_{t \in Q_{V(E(F))}} \chi_{F(t)}(G)\right| \leq n^{|V(E(F))|-\mathrm{vc}(F) / 8}
$$

Edge Axioms, Successful Attempt

$$
\begin{aligned}
\left|\mu\left(m \cdot x_{v_{1}} x_{v_{2}}\right)\right| & \leq n^{-k} \sum_{F}|\sum_{t_{A} \in Q_{V(E(F))}} \chi_{F\left(t_{A}\right)}(G) \cdot \underbrace{}_{t_{B} \in Q_{[k] \backslash V(E(F))}} \sum_{E \subseteq E_{F}^{\star}} \chi_{E\left(t_{A} \cup t_{B}\right)}(G)| \\
& \leq 3 \sum_{F} n^{-|V(E(F))|}\left|\sum_{t_{A} \in Q_{V(E(F))}^{k-|V(E(F))|}} \chi_{F\left(t_{A}\right)}(G)\right| \\
& \leq 3 \sum_{F} n^{-d / 8} \approx 2^{3 d^{2}} n^{-d / 8}=n^{-\Omega(\log n)}
\end{aligned}
$$

Lemma (recall)
With high probability over $G \sim \mathcal{G}(n, k, 1 / 2)$ it holds for any F and $Q_{V(E(F))}$ that

$$
\left|\sum_{t \in Q_{V(E(F))}} \chi_{F(t)}(G)\right| \leq n^{|V(E(F))|-\mathrm{vc}(F) / 8}
$$

Summary \& Recap

Proof Summary

- Duality gives the notion of a δ-pseudo-measure
- We construct a $n^{-\Omega(\log n)}$-pseudo-measure for clique by Pseudo-Calibration:

$$
\mu(m)=n^{-k} \sum_{\substack{H \subseteq\left(\begin{array}{l}
k \\
2
\end{array}\right) \\
\operatorname{vc}(H) \leq d}} \sum_{t \in Q(m)} \chi_{H(t)}(G)
$$

- We argued that
- μ is large on 1 :

$$
\begin{gathered}
\mu(1) \approx 1 \\
\left|\mu\left(m \cdot x_{u} x_{v}\right)\right| \leq n^{-\Omega(\log n)}
\end{gathered}
$$

- It remains to argue that
- μ is basically non-negative:

$$
\mu(m) \geq-n^{-\Omega(\log n)}
$$

Recap \& Some Open Problems

Recap:

- Poly-time algorithms based on unary linear programming believe that

$$
\mathcal{G}(n, 1 / 2) \approx \mathcal{G}\left(n, 1 / 2, n^{1 / 100}\right)
$$

Recap \& Some Open Problems

Recap:

- Poly-time algorithms based on unary linear programming believe that

$$
\mathcal{G}(n, 1 / 2) \approx \mathcal{G}\left(n, 1 / 2, n^{1 / 100}\right)
$$

\Rightarrow establishes a weak version of the planted clique conjecture for this class of algorithms

Recap \& Some Open Problems

Recap:

- Poly-time algorithms based on unary linear programming believe that

$$
\mathcal{G}(n, 1 / 2) \approx \mathcal{G}\left(n, 1 / 2, n^{1 / 100}\right)
$$

\Rightarrow establishes a weak version of the planted clique conjecture for this class of algorithms
Some open problems:

- Prove the planted clique conjecture for Resolution.
- Is it possible to obtain a combinatorial description of our pseudo-measure?
- Improve the size of the planted clique to n in the block model

Recap \& Some Open Problems

Recap:

- Poly-time algorithms based on unary linear programming believe that

$$
\mathcal{G}(n, 1 / 2) \approx \mathcal{G}\left(n, 1 / 2, n^{1 / 100}\right)
$$

\Rightarrow establishes a weak version of the planted clique conjecture for this class of algorithms
Some open problems:

- Prove the planted clique conjecture for Resolution.
- Is it possible to obtain a combinatorial description of our pseudo-measure?
- Improve the size of the planted clique to n in the block model

Thanks!

Further Material

Cores

Cores, Construction

Cores, Construction

Cores, Construction

- S_{1} is maximal vertex set with a matching in H into vc

Cores, Construction

- S_{1} is maximal vertex set with a matching in H into vc
- S_{2} is maximal vertex set with a matching in $H \backslash S_{1}$ into vc

Cores, Construction

- S_{1} is maximal vertex set with a matching in H into vc
- S_{2} is maximal vertex set with a matching in $H \backslash S_{1}$ into vc

On the (Almost) Non-Negativity of μ

Non-Negativity: Some Intuition

- Recall that μ is small on edge-axioms while $\mu(1) \approx 1$

Non-Negativity: Some Intuition

- Recall that μ is small on edge-axioms while $\mu(1) \approx 1$
- However, the expected value of $\mu\left(x_{u} x_{v}\right)$ is

$$
\mathbb{E}\left[\mu\left(x_{u} x_{v}\right)\right]=Q\left(x_{u} x_{v}\right) / n^{k}=1 / n^{2}
$$

Non-Negativity: Some Intuition

- Recall that μ is small on edge-axioms while $\mu(1) \approx 1$
- However, the expected value of $\mu\left(x_{u} x_{v}\right)$ is

$$
\mathbb{E}\left[\mu\left(x_{u} x_{v}\right)\right]=Q\left(x_{u} x_{v}\right) / n^{k}=1 / n^{2}
$$

- Also, if we sum over all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ we have

$$
\mu(1)=\sum_{v_{1} \in V_{1}} \sum_{v_{2} \in V_{2}} \mu\left(x_{v_{1}} x_{v_{2}}\right) \approx \sum_{v_{1} \in V_{1}} \sum_{v_{2} \in V_{2}} \mathbb{1}_{\left\{v_{1} v_{2} \text { is an edge }\right\}}(G) \mu\left(x_{v_{1}} x_{v_{2}}\right) \approx 1
$$

Non-Negativity: Some Intuition

- Recall that μ is small on edge-axioms while $\mu(1) \approx 1$
- However, the expected value of $\mu\left(x_{u} x_{v}\right)$ is

$$
\mathbb{E}\left[\mu\left(x_{u} x_{v}\right)\right]=Q\left(x_{u} x_{v}\right) / n^{k}=1 / n^{2}
$$

- Also, if we sum over all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ we have

$$
\mu(1)=\sum_{v_{1} \in V_{1}} \sum_{v_{2} \in V_{2}} \mu\left(x_{v_{1}} x_{v_{2}}\right) \approx \sum_{v_{1} \in V_{1}} \sum_{v_{2} \in V_{2}} \mathbb{1}_{\left\{v_{1} v_{2} \text { is an edge }\right\}}(G) \mu\left(x_{v_{1}} x_{v_{2}}\right) \approx 1
$$

- Hence, conditioned on the edge $u v$ being present, then

$$
\mathbb{E}\left[\mu\left(x_{u} x_{v}\right) \mid u v \in E(G)\right]=2 / n^{2}
$$

Non-Negativity: Some Intuition

- Recall that μ is small on edge-axioms while $\mu(1) \approx 1$
- However, the expected value of $\mu\left(x_{u} x_{v}\right)$ is

$$
\mathbb{E}\left[\mu\left(x_{u} x_{v}\right)\right]=Q\left(x_{u} x_{v}\right) / n^{k}=1 / n^{2}
$$

- Also, if we sum over all $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ we have

$$
\mu(1)=\sum_{v_{1} \in V_{1}} \sum_{v_{2} \in V_{2}} \mu\left(x_{v_{1}} x_{v_{2}}\right) \approx \sum_{v_{1} \in V_{1}} \sum_{v_{2} \in V_{2}} \mathbb{1}_{\left\{v_{1} v_{2} \text { is an edge }\right\}}(G) \mu\left(x_{v_{1}} x_{v_{2}}\right) \approx 1
$$

- Hence, conditioned on the edge $u v$ being present, then

$$
\mathbb{E}\left[\mu\left(x_{u} x_{v}\right) \mid u v \in E(G)\right]=2 / n^{2}
$$

\Rightarrow on some rectangles Q the measure does not concentrate around $|Q| / n^{k}$

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles

- Need to identify rectangles whose value deviates significantly from the expected value
- Recursively decompose a rectangle as illustrated

Non-Negativity: Decomposition of Rectangles II

- Decomposition partitions rectangle Q_{0} into collection \mathcal{Q}, of size $n^{\varepsilon \log n}$, such that each rectangle $Q \in \mathcal{Q}$ satisfies

Non-Negativity: Decomposition of Rectangles II

- Decomposition partitions rectangle Q_{0} into collection \mathcal{Q}, of size $n^{\varepsilon \log n}$, such that each rectangle $Q \in \mathcal{Q}$ satisfies
- Q is an edge-axiom hence $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or

Non-Negativity: Decomposition of Rectangles II

- Decomposition partitions rectangle Q_{0} into collection \mathcal{Q}, of size $n^{\varepsilon \log n}$, such that each rectangle $Q \in \mathcal{Q}$ satisfies
- Q is an edge-axiom hence $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or
- Q is small; $|Q| \approx n^{k-d}$ thus $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or

Non-Negativity: Decomposition of Rectangles II

- Decomposition partitions rectangle Q_{0} into collection \mathcal{Q}, of size $n^{\varepsilon \log n}$, such that each rectangle $Q \in \mathcal{Q}$ satisfies
- Q is an edge-axiom hence $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or
- Q is small; $|Q| \approx n^{k-d}$ thus $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or
- Q has large, well-behaved blocks \& singletons adjacent to Q

Non-Negativity: Decomposition of Rectangles II

- Decomposition partitions rectangle Q_{0} into collection \mathcal{Q}, of size $n^{\varepsilon \log n}$, such that each rectangle $Q \in \mathcal{Q}$ satisfies
- Q is an edge-axiom hence $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or
- Q is small; $|Q| \approx n^{k-d}$ thus $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or
- Q has large, well-behaved blocks \& singletons adjacent to Q
- We show that μ concentrates on such Q around strictly positive value

Non-Negativity: Decomposition of Rectangles II

- Decomposition partitions rectangle Q_{0} into collection \mathcal{Q}, of size $n^{\varepsilon \log n}$, such that each rectangle $Q \in \mathcal{Q}$ satisfies
- Q is an edge-axiom hence $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or
- Q is small; $|Q| \approx n^{k-d}$ thus $\mu(Q) \geq-n^{-10 \varepsilon \log n}$, or
- Q has large, well-behaved blocks \& singletons adjacent to Q
- We show that μ concentrates on such Q around strictly positive value
- May conclude for any monomial m that $\mu(m) \geq-n^{-\Omega(\log n)}$

Non-Negativity: Concentration of Measure

Lemma

For any well-behaved rectangle Q with ℓ singletons,

Non-Negativity: Concentration of Measure

Lemma

For any well-behaved rectangle Q with ℓ singletons, with high probability, it holds that

$$
\mu(Q)=2^{\ell(k-(\ell+1) / 2)} \cdot|Q| n^{-k} \cdot\left(1 \pm n^{-\varepsilon}\right)
$$

Non-Negativity: Concentration of Measure

Lemma

For any well-behaved rectangle Q with ℓ singletons, with high probability, it holds that

$$
\mu(Q)=\underbrace{2^{\ell(k-(\ell+1) / 2)}}_{\text {\#conditioned edges }} \cdot \underbrace{|Q| n^{-k}}_{\text {expectation }} \cdot\left(1 \pm n^{-\varepsilon}\right)
$$

Non-Negativity: Concentration of Measure, Proof Idea

$$
\mu(Q)=n^{-k} \sum_{\substack{H: \\ \operatorname{vc}(H) \leq d}} \sum_{t \in Q} \chi_{H(t)}(G)
$$

Non-Negativity: Concentration of Measure, Proof Idea

$$
\mu(Q)=n^{-k} \sum_{\substack{H: \\ \mathrm{vc}(H) \leq d \\\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)+\sum_{\substack{H: \\ \mathrm{vc}(H) \leq d \\\{1,2\} \in H}} \sum_{t \in Q} \chi_{H(t)}(G)
$$

Non-Negativity: Concentration of Measure, Proof Idea

$$
\begin{aligned}
\mu(Q) & =n^{-k} \sum_{\substack{H \dot{j} \\
\mathrm{vc}(H) \leq d \\
\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)+\sum_{\substack{H \dot{H} \leq \\
\mathrm{vc}(H) \leq d \\
\{1,2\} \in H}} \sum_{t \in Q} \chi_{H(t)}(G) \\
& =2 \cdot n^{-k} \sum_{\substack{H: \\
\mathrm{vc}(H) \leq d \\
\{1,2\} \in H}} \sum_{t \in Q} \chi_{H(t)}(G)
\end{aligned}
$$

Non-Negativity: Concentration of Measure, Proof Idea

$$
\begin{aligned}
& \mu(Q)=n^{-k} \sum_{\substack{H \dot{H} \\
\mathrm{vc}(H) \leq d \\
\{1,2\} \notin H}} \sum_{t \in Q} \chi_{H(t)}(G)+\sum_{\substack{H: \\
\mathrm{vc}(H) \leq d \\
\{1,2\} \in H}} \sum_{t \in Q} \chi_{H(t)}(G) \\
& =2 \cdot n^{-k} \sum_{\substack{H: \\
\operatorname{vc}(H) \leq d \\
\{1,2\} \in H}} \sum_{t \in Q} \chi_{H(t)}(G)+\sum_{\substack{H: \\
\operatorname{vc}(H)=d \\
\operatorname{vc}(H \cup\{1,2\})=d+1}} \sum_{t \in Q} \chi_{H(t)}(G) \\
& \text { like edge axiom } \approx n^{-\Omega(\log n)}
\end{aligned}
$$

Non-Negativity: Concentration of Measure, Proof Idea

Non-Negativity: Concentration of Measure, Proof Idea

- Finally left with sum over H with all conditioned edges present

Non-Negativity: Concentration of Measure, Proof Idea

- Finally left with sum over H with all conditioned edges present
- As $\ell<d$, there is at least one unconditioned edge left

Non-Negativity: Concentration of Measure, Proof Idea

- Finally left with sum over H with all conditioned edges present
- As $\ell<d$, there is at least one unconditioned edge left
- Rely on cores as in edge-axioms

Non-Negativity: Concentration of Measure, Proof Idea

- Finally left with sum over H with all conditioned edges present
- As $\ell<d$, there is at least one unconditioned edge left
- Rely on cores as in edge-axioms
- Cores with single edge have concentration $\left(1 \pm n^{-\varepsilon}\right)$

[^0]: $n^{\Omega(\log n)}$ size lower bounds

[^1]: $n^{\Omega(\log n)}$ size lower bounds

[^2]: $n^{\Omega(\log n)}$ size lower bounds

[^3]: $n^{\Omega(\log n)}$ size lower bounds

