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Abstract—We prove that unary Sherali-Adams requires proofs
of size nΩ(d) to rule out the existence of an nΘ(1)-clique in Erdős-
Rényi random graphs whose maximum clique is of size d ≤ 2 log n.
This lower bound is tight up to the multiplicative constant in
the exponent. We obtain this result by introducing a technique
inspired by pseudo-calibration which may be of independent
interest. The technique involves defining a measure on monomials
that precisely captures the contribution of a monomial to a
refutation. This measure intuitively captures progress and should
have further applications in proof complexity.

Index Terms—Proof Complexity, Clique, Unary Sherali Adams

I . I N T R O D U C T I O N

The problem of identifying a maximum clique in a given

graph, that is, finding a fully connected subgraph of maximum

size, is one of the fundamental problems of theoretical com-

puter science. It is one of the first combinatorial problems

proven NP-hard by Karp in the 1970s [1] and was even

mentioned in Cook’s paper [2] introducing the theory of NP-

complete problems. This problem is also notoriously hard to

approximate: unless P = NP, the size of the maximum clique

cannot be approximated within a factor of n1−ε [3], [4].

The k-clique problem, determining whether there is a clique

of size k in a given n-vertex graph, can be solved by iterating

over all subsets of vertices of size k and checking whether one

of them is a clique. Somewhat surprisingly, this naı̈ve algorithm,

which runs in time O(nk), is believed to be essentially tight:

the constant in the exponent can be slightly improved by a

clever use of matrix multiplication [5] but unless the class of

fixed parameter tractable problems collapses to W[1], there

must be some dependence on k in the exponent [6], and under

the exponential time hypothesis [7] this dependency must be

linear [8].

While the clique problem is quite well understood in the

worst case and under standard hardness assumptions, much

less is known in the average-case setting. For example, it is

not known whether there are algorithms running in time no(k)
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that, given an Erdős-Rényi graph with edge probability just

below the threshold of containing a k-clique, can determine

that the graph does not contain a k-clique. Even if we only

require the algorithm to refute the existence of a clique of size

nε � k, this problem is still conjectured to be hard.
Such average-case questions seem difficult to relate to worst-

case hardness assumptions such as P �= NP. Therefore, instead

of studying this average-case question in the Turing model

under standard hardness assumptions, we study these questions

for limited models of computation but prove unconditional
lower bounds. This approach has turned out to be quite fruitful

and several results of this form have emerged over the past

few decades. For Boolean circuits, Rossman [9], [10] proved

two remarkable results: he showed that monotone circuits, i.e.,

circuits consisting of ∨ and ∧ gates only, as well as circuits

of constant depth require size Ω(nk/4) to refute the existence

of a k-clique in the average-case setting.
Instead of studying circuits, we approach this problem from

the lens of proof complexity. Very broadly, proof complexity

studies certificates of unsatisfiability of propositional formulas.

As we cannot argue about certificates of unsatisfiability in

general we consider certificates of a certain form, or in terms

of proof complexity, refutations in a given proof system. For

instance, if we prove that any certificate in a proof system P
that witnesses that a given n-vertex graph contains no k-

clique requires length nΩ(k) on average, then we immediately

obtain average-case nΩ(k) running time lower bounds for any

algorithm whose trace can be interpreted as a proof in the

system P . It is often the case that state-of-the-art algorithms

can be captured by seemingly simple proof systems, as was

shown to be the case for clique algorithms [11].
It is often the case that weak proof systems are sensitive

to the precise encoding of principles. The k-clique formula is

no exception: it is somewhat straightforward to prove almost

optimal nΩ(k) resolution size lower bounds for the less usual

binary encoding of the k-clique formula [12] and these lower

bounds can even be extended to an nΩ(k) lower bound for the

Res(s) proof system for constant s [13]. For the more natural

unary encoding, not much is known. There are essentially

optimal nΩ(k) average-case size lower bounds for regular

resolution [11], [14] and tree-like resolution [15], [16]. For

resolution, there are two average-case lower bounds that hold

in different regimes: for n5/6 � k ≤ n/3, Beame et al. [17]

proved an average-case exp(nΩ(1)) size lower bound and for

k ≤ n1/3, Pang [14] proved a 2k
1−o(1)

lower bound. It is a

long standing open problem, mentioned, e.g., in [15], to prove

an unconditional nΩ(k) resolution size lower bound for the
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unary encoding—even in the worst case. If we wish to extend

these results to stronger proof systems that can reason about

different formulations of the same problem, our lower bound

techniques should also be oblivious to the precise encoding of

problems. As we explain later on, this is one of the strengths

of our proof strategy.

Little is known about the average-case hardness of the k-

clique formula in the semi-algebraic setting. There are optimal

degree lower bounds for k ≤ n1/2−ε for the Sum-of-Squares

proof system [18]–[20], but there are no non-trivial lower

bounds on size. For Nullstellensatz, however, if restricted to

not use dual variables, then size lower bounds follow by a

simple syntactic argument [21]. Prior to our work no other

size lower bounds were known for algebraic or semi-algebraic

proof systems.

A. Our Result

In this work, we obtain the first size-lower bound on the

clique formula for a semi-algebraic proof system. We show that

the unary Sherali-Adams proof system, which is incomparable

to resolution [22], requires size nΩ(D) to refute the k-clique

formula on random graphs whose maximum clique is of size

D ≤ 2 logn. Our result even applies in the approximate setting,

where the formula states that the graph contains a clique of

size n1/100 but with high probability there is no clique of size

D.

Theorem I.1 (Informal). For all integers n ∈ N
+ and D ≤

2 log n, if G ∼ G(n, n−2/D) is an Erdős-Rényi random graph,
then it holds asymptotically almost surely that unary Sherali-
Adams requires size at least nΩ(D) to refute the claim that G
contains a clique of size k, for any k ≤ n1/67.

We note that our result also holds for the SubCubeSum proof

system [23]. In fact our proof strategy gives a lower bound on

the sum of coefficients of a Sherali-Adams refutation, ignoring

Boolean axioms.

Let us stress that the size lower bound holds regardless of

the degree of the refutation. This is a somewhat unique feature

of our technique—all other lower bound strategies for Sherali-

Adams and Sum-of-Squares are tailored to proving degree

lower bounds, which, if strong enough, imply size lower bounds

by the size-degree relation [24]. Since the clique formula has

refutations of degree D we cannot expect to obtain size lower

bounds through this connection for D ≤ √
n. We therefore

introduce a new technique, inspired by pseudo-calibration [19],

that is more refined—for any monomial m, of arbitrary degree,

we determine a lower bound on the size of the smallest unary

Sherali-Adams proof of m.

B. Organization

The rest of this paper is organized as follows. In Section II

we introduce some basic terminology to then outline our proof

strategy in Section III where we also attempt to convey some

intuition. With the motivation at hand from Section III we then

go on to define the central combinatorial concept of a core of

a graph in Section IV and a notion of pseudorandomness in

Section V. We proceed in Section VI to prove the main theorem

for any graph satisfying our notion of pseudorandomness,

albeit omitting the proof of one of the main lemmas. Finally,

in Section VII we conclude with some open problems. We

refer to the full-length version of this paper for the missing

proofs, including that Erdős-Rényi random graphs satisfy the

pseudorandom properties we define.

I I . P R E L I M I N A R I E S

Natural logarithms (base e) are denoted by ln, whereas

base 2 logarithms are denoted by log. For integers n ≥ 1
we introduce the shorthand [n] = {1, 2, . . . , n} and sometimes

identify singletons {u} with the element u. Let
(
S
�

)
denote

the set of subsets of S of size � and, for a given a random

variable X and an event P , we denote by �P (X) the indicator

random variable that is 1 if P holds and 0 otherwise.

Instead of working with an Erdős-Rényi random graph,

we work in the block model [11], [17] as defined below.

From [11], [17] we know that a lower bound on the block

model implies a lower bound for Erdős-Rényi random graphs.

Before introducing the block model, we need to set up some

terminology and notation.

For the remainder of this paper G always denotes a k-

partite graph with partitions V1, . . . , Vk of size n each. We

call a partition Vi a block and, for S ⊆ [k], denote by

VS the vertices in blocks in S, that is, VS =
⋃

i∈S Vi. For

disjoint sets W1, . . . ,Ws we let a tuple t = (w1, . . . , ws) be

a sequence of vertices satisfying wi ∈ Wi for all i ∈ [s]. All

tuples we consider are defined with respect to the partition

V1, . . . , Vk, though, at times, may only be defined over a subset

of the blocks, that is, not all tuples are of size k. For a tuple

t = (v1, . . . , vk) and a set S ⊆ [k] we denote the projection of

t onto S by tS = (vi | i ∈ S). An s-tuple is a tuple of size s
and sometimes it is convenient for us to think of a tuple as a

set of vertices. We take the liberty to interchangeably identify

a tuple as a sequence as well as a set and hope that this causes

no confusion.

A set Q of tuples is a rectangle if it can be written as the

Cartesian product of sets Ui ⊆ Vi (possibly empty) for i ∈ [k].
In other words, Q =×i∈[k] Ui or, equivalently, there is a

set S ⊆ [k] such that Q contains all tuples t = (u1, . . . , us)
satisfying ui ∈ Ui for i ∈ S. Rectangles, unless explicitly

stated, consist of k-tuples only, that is, if Q =×i∈[k] Ui,

then we usually assume that all Ui are non-empty. Given a

rectangle Q and a set S ⊆ [k] we let QS be the projection of Q
onto the blocks in S: if Q =×i∈[k] Ui, then QS =×i∈S Ui

and, in particular, we have Qi = Ui for i ∈ [k].
While G always denotes a large graph, the graphs H and

F denote small graphs: throughout the paper H and F are

graphs on k labeled vertices. Usually these graphs have a

small vertex cover and graphs denoted by F furthermore have

many isolated vertices. For a graph H we denote the minimum

vertex cover by vc(H) and sometimes refer to H as a pattern
graph, whereas F is usually a core graph (see Section IV). We

denote by H the set of graphs on k labeled vertices and for

a parameter i ∈ N
+ let Hi ⊆ H be the family of graphs with
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a minimum vertex cover of size at most i, that is, all graphs

H ∈ Hi satisfy vc(H) ≤ i.
Given k blocks V1, . . . , Vk of size n and a real number

0 ≤ p ≤ 1 we denote by G(n, k, p) the distribution over

graphs on the vertex set V[k] defined by sampling each edge

e = {u, v} independently with probability p if u and v are in

distinct blocks. Edges within the same block are never included

and hence G(n, k, p) is a distribution over k-partite graphs.

A. Clique Formula

Below we present a polynomial encoding of the k-clique

formula. As our lower bound strategy is quite agnostic to the

precise encoding we could equally well define the formula as

a translation of a CNF. For the sake of exposition we choose

to work with the following encoding.

Given a k-partite graph G with blocks V1, . . . , Vk of size n
we define the k-clique formula over G as follows. The formula

is defined over 2kn variables: each vertex v ∈ V[k] is associated

with two variables xv and x̄v. All variables are Boolean and

thus for each variable y (where y is either xv or x̄v for some

v ∈ V[k]) we introduce the Boolean axiom y(1− y). Through

the negation axioms 1− x̄v − xv we ensure that the variables

associated with a single vertex v are the negation of each other.

For each block Vi we introduce the block axiom
∑

v∈Vi
xv − 1

stating that precisely one vertex from each block is chosen

and for each pair of vertices {u, v} �∈ G in distinct blocks we

introduce the edge axiom xuxv that ensures that non-neighbors

are not simultaneously selected. Let us remark that we could

add edge axioms for pairs of vertices in the same block but

for ease of exposition we choose not to include them.

It should be evident that this formula is satisfiable if and only

if there is a k-tuple t such that the vertex induced subgraph

G[t] is a clique.

B. Unary Sherali-Adams

Let P = {p1 = 0, . . . , pm = 0} be a polynomial system

of equations over Boolean variables x1, . . . , xn and their twin

variables x̄1, . . . , x̄n. If we assume that P contains all the

necessary Boolean axioms as well as the negation axioms, then

a Sherali-Adams refutation of P is a sequence of polynomials

(g1, . . . , gm, f0) such that f0 is of the form

f0 =
∑

A,B⊆[n]
αA,B≥0

αA,B

∏
i∈A

xi

∏
i∈B

x̄i (1)

and it holds that ∑
j∈[m]

gjpj + f0 = −1 . (2)

The size of a refutation is the number of monomials on the left

hand side of Equation (2) when all polynomials are expanded

out (without any cancellations) as a sum of monomials. The

coefficient size of a Sherali-Adams refutation is the sum of the

magnitudes of the coefficients of all monomials occurring in

the proof (again, without any cancellations).

Unary Sherali-Adams is a subsystem of Sherali-Adams

where all coefficients of monomials are either +1 or −1 and

the right-hand-side of Equation (2) is any negative integer∑
j∈[m]

gjpj + f0 = −M , (3)

where f0 is again a non-negative sum of monomials (sometimes

also called a conical junta).

Proposition II.1. If Sherali-Adams requires coefficient size s
to refute P , then unary Sherali-Adams requires size at least s
to refute P .

Proof. We can transform any unary Sherali-Adams refutation

of size s, summing to an integer −M , to a Sherali-Adams

refutation of coefficient size at most s by dividing the left

hand side by M ≥ 1.

We may define the clique formula, as introduced in Sec-

tion II-A, over any graph G = (V,E) on kn vertices by

partitioning the vertices into k sets V = V1 ∪̇ · · · ∪̇Vk of

equal size and defining the clique formula with respect to that

partition. It may be more natural to define the k-clique formula

for such G with V1 = · · · = Vk. The following proposition,

essentially due to Beame et al. [17], states that the Sherali-

Adams coefficient size required to refute the latter is lower

bounded by the coefficient size required to refute the clique

formula defined with respect to a k-partition.

Proposition II.2 ( [17]). For k, n ∈ N
+ and any graph G

on kn vertices, the minimum Sherali-Adams coefficient size
to refute the k-clique formula over G is bounded from below
by the coefficient size required to refute the k-clique formula
defined with respect to any equal sized k-partition of G.

This proposition was proven in [17] for resolution size via

a restriction argument, and it is straightforward to see that the

same proof holds for Sherali-Adams coefficient size.

C. Some Auxiliary Lemmas
Lemma II.3. There are at most 2c log k+b(c−(b+1)/2) ≤
2c(b+log k) graphs H over k vertices with a vertex cover of
size b and

∣∣V (
E(H)

)∣∣ ≤ c.

Proof. We first choose the b vertices from the k vertices that

form the vertex cover. Then, from the remaining k− b vertices,

we choose c− b vertices that may be incident to an edge. We

can add edges that are incident to the vertex cover and the

other c− b vertices and thus get that there are at most(
k

b

)(
k − b

c− b

)
2(

b
2)2b(c−b) ≤ 2c log k+b(c−(b+1)/2) (4)

many such graphs.

Recall that a maximal matching of H is a matching that

cannot be extended in H .

Proposition II.4. Any maximal matching in a graph H is of
size at least �vc(H)/2�.

Proof. Since M is maximal, all edges of H are incident to

V (M). Thus the set V (M) is a vertex cover of H .
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I I I . M A I N T H E O R E M A N D P R O O F OV E RV I E W

The main result in this paper is a tight, up to constants in

the exponent, size lower bound for unary Sherali-Adams for

k-clique formulas over Erdős-Rényi random graphs, which we

state formally next.

Theorem III.1. For all integers n ∈ N
+, D ≤ 2 logn and

k ≤ n1/66, if G ∼ G(n, k, n−2/D), then it holds asymptotically
almost surely that unary Sherali-Adams requires size at least
nΩ(D) to refute the k-clique formula over G.

Note that Theorem I.1 follows directly from Theorem III.1

along with Proposition II.2.

In the rest of this section we outline our proof strategy. We

intend to come up with a so-called pseudo-measure which

lower bounds the size of a unary Sherali-Adams refutation.

In fact it proves something slightly stronger: the existence of

a pseudo-measure implies a lower bound on the sum of the

magnitude of the coefficients of a (general) Sherali-Adams

refutation. Before we get ahead of ourselves let us define what

a pseudo-measure is. A similar notion has previously appeared

in [25] for the Nullstellensatz proof system over the reals.

Definition III.2 (pseudo-measure). Let δ > 0 and

P be a set of polynomials over the polynomial

ring R[x1, . . . , xn, x̄1, . . . , x̄n]. A linear function

μ : R[x1, . . . , xn, x̄1, . . . , x̄n] → R, mapping polynomials to

reals, is a δ-pseudo-measure for P if for all monomials m
and all polynomials p ∈ P it holds that

1) |μ(m · p)| ≤ δ, and

2) μ(m) ≥ −δ.

We have the following simple proposition.

Proposition III.3. If μ is a δ-pseudo-measure for P , then any
Sherali-Adams refutation of P requires coefficient size at least
μ(1)/δ. In particular, this implies that unary Sherali-Adams
requires size at least μ(1)/δ to refute P .

Proof. Suppose we have a δ-pseudo measure μ for P and a

Sherali-Adams refutation∑
p∈P

gp · p+ f0 = −1 (5)

of P . Apply μ to the refutation. Observe that the left-hand side

has to sum to −μ(1). For any p ∈ P and any monomial m
occurring in gp with coefficient cm, it holds that |μ(m · p)| ≤
cm · δ and similarly for a monomial m ∈ f0 occurring with

a positive coefficient cm it holds that μ(m) ≥ −cm · δ. Thus

Sherali-Adams requires coefficient size at least μ(1)/δ, as

claimed. The size lower bound for unary Sherali-Adams follows

by virtue of Proposition II.1.

A. Our Pseudo-Measure

In what follows we define our pseudo-measure μ for the

k-clique formula. We may think of μ as a progress measure:

it assigns to each monomial a real value which can be thought

of as the contribution of this monomial towards the refutation

of the k-clique formula. Thus, intuitively, we would like

to associate each monomial with the fraction of potentially

satisfying assignments that it rules out. In order to define this

a bit more formally, let us introduce the set of potentially

satisfying assignments.

We say that an assignment α is potentially satisfying for

the k-clique formula if there is a graph G such that the k-

clique formula defined over G is satisfied by α. This set of

assignments can be easily characterized: if we associate each

k-tuple t with the assignment ρt that sets all variables xu

to 1 if u ∈ t and to 0 otherwise, then the set of potentially

satisfying assignments of the k-clique formula is

{ρt | t ∈ V1 × V2 × · · · × Vk} . (6)

We say that a monomial m rules out an assignment ρ if

ρ(m) = 1. As there is a one-to-one correspondence between

potentially satisfying assignments and tuples, it is convenient to

think of the tuples that a monomial rules out. We thus associate

each monomial m with the set

Q(m) = {t | ρt(m) = 1} (7)

of ruled out k-tuples. Note that Q(1) is the set of all tuples, that

is, Q(1) = V1×V2×· · ·×Vk and the set Q(xuxv) associated

with an edge axiom xuxv consists of all k-tuples that contain

the vertices u and v.

More generally, it is not too hard to see that the set of

ruled out tuples of a monomial is a rectangle and that for

each rectangle Q there is at least one monomial m such that

Q is the set of tuples ruled out by m. We thus often discuss

rectangles and it is implicitly understood that if a statement

holds for all rectangles, then it also holds for all monomials.

Finally, observe that if a monomial m satisfies m = m1 ·m2,

then Q(m) ⊆ Q(m1).
For intuition we will now discuss two naı̈ve, and fatally

flawed, attempts to define a pseudo-measure. For our first

attempt, we simply associate each monomial with the fraction

of ruled out tuples, that is we map a monomial m to

|Q(m)|
|Q(1)| = n−k · |Q(m)| . (8)

This measure is clearly non-negative and hence satisfies

Property 2 of Definition III.2 for any δ > 0. Furthermore, again

for any δ > 0, it satisfies Property 1 of Definition III.2 for

the Boolean axioms, the negation axioms as well as the block

axioms. Only the edge axioms cause trouble: the rectangle

Q(xuxv) associated with the edge axiom xuxv is a n−2

fraction of all tuples. As such, this pseudo-measure may only

gives us an n2 lower bound—not quite what we are after.

We may remedy this by not associating a monomial m with

all tuples in Q(m) but rather only with a subset of Q(m) that

depends on the graph G. One very naı̈ve attempt would be

to associate m with the number of k-cliques that it rules out,

that is, we may associate a monomial m with the normalized

measure

n−k
∑

t∈Q(m)

2(
k
2)�{t is a clique}(G) . (9)
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H

H(t)

V1 V2 V3 Vk. . .

v1

v2

v3

vk

1 2 3 k. . .

Figure 1. A pattern graph H mapped onto a tuple t = (v1, . . . , vk)

This definition, at least in expectation over G ∼ G(n, k, 1/2),
satisfies all properties of a pseudo-measure: the monomial 1 is

mapped to 1, the axioms are all mapped to 0 and the measure

is non-negative.

The obvious problem is that all graphs we consider do

not contain a k-clique and hence everything (including the

monomial 1) is mapped to 0. Following the lead of Barak

et al. [19] we expand Equation (9) in the Fourier basis and

truncate the resulting expression. By a careful choice of our

truncation we can with some significant effort prove that this

measure satisfies all required properties of Definition III.2. In

order to state the precise definition of μ we need some notation.

For each potential edge e we have a character χe(G) defined

by

χe(G) =

{
1−p
p if e ∈ E(G)

−1 otherwise;
(10)

and for a set of potential edges E we let χE(G) =∏
e∈E χe(G). Note that for p = 1/2 this is the usual ±1

Fourier basis. First time readers are advised to keep this case

in mind for the remainder of the article.

To concisely state our pseudo-measure we need some further

notation. We consider sums of tuples and want to treat edge

sets that are equal up to the mapping onto a k-tuple as the same.

More precisely, if we have two k-tuples t = (v1, . . . , vk), t
′ =

(v′1, . . . , v
′
k) and edge sets E ⊆ (

t
2

)
and E′ ⊆ (

t′

2

)
such that

{vi, vj} ∈ E if and only if {v′i, v′j} ∈ E′, then we want

to identify E and E′ as the same edge set. To this end we

consider pattern graphs H (similar to the shape graphs in

the terminology of [19]) over the vertex set [k]. For a tuple

t = (v1, . . . , vk) and a graph H over [k] we let H(t) be the

edge set that contains the edge {vi, vj} if and only if the edge

{i, j} is present in H . See Figure 1 for an illustration. With

this notation at hand we define our pseudo-measure as

μ(m) = μd

(
Q(m)

)
= n−k

∑
t∈Q(m)

∑
H

vc(H)≤d

χH(t)(G) , (11)

where the second sum is over all graphs H over [k] vertices

with vertex cover at most d, and d = ηD is a small constant

η > 0 times the maximum clique size of G. It is convenient

for us to work with the above (non-standard) basis as it allows

us to easily cancel characters in case an edge is missing.

Observe that Boolean axioms, the negation axioms and the

block axioms multiplied by an arbitrary monomial are all

mapped to 0 by μ. Hence it remains to prove that the measure

μ maps the constant 1 monomial to a large value, that μ is

small on subrectangles of edge axioms, i.e., any edge axiom

multiplied by a monomial is mapped to a small value, and that

all monomials are mapped to an approximately non-negative

value.

By inspecting the second moment of μ(1) it is not too hard

to see that there is quite a bit of freedom on how to choose

the truncation in the definition of μ while maintaining the

property that μ(1) = 1± n−Ω(1) asymptotically almost surely.

However, ensuring that the edge axioms are associated with

small measure is more delicate. Here we heavily rely on our

choice to truncate according to the minimum vertex cover.

More specifically we rely on two crucial properties of graphs

H satisfying vc(H) = d: firstly, we use the fact that such

graphs contain a matching of size �d/2� (see Proposition II.4)

and, secondly, that the family of these graphs satisfies a

monotonicity property which leads to a useful partition of

this family. For more details about this partition we refer to

Section IV. Let us mention that it is conceivable that one

could increase the bound on k for which our results hold by

truncating according to the size of the maximum matching. As

we do not know how to define the above mentioned partition

with respect to maximum matching we truncate according to

the minimum vertex cover.

In the following sections we try to present some intuition

as to why μd is a pseudo-measure, that is, why it satisfies

Definition III.2. In Section III-B we verify that G sampled

from G(n, k, 1/2) asymptotically almost surely satisfies μ(1) =
μd(×i∈[k] Vi) = 1 ± n−Ω(1). As mentioned, this follows by

a straightforward second moment argument. In Section III-C

we outline why any subrectangle Q of an edge axiom satisfies

|μd(Q)| ≤ n−Ω(d). This proof motivates the definitions in

Sections IV and V. Finally, in Section III-D, we provide some

high-level overview of how to prove that any rectangle Q is

mapped to an approximately non-negative value, that is, it

holds that μd(Q) ≥ −n−Ω(d). This is the most technically

challenging part of the paper.

B. Expected Behavior of Our Pseudo-Measure

The measure μd(Q) of any rectangle Q satisfies

EG[μd(Q)] = n−k
∑
t∈Q

∑
H∈Hd

EG[χH(t)(G)] (12)

= n−k
∑
t∈Q

EG[χ∅(t)(G)] (13)

= n−k|Q| . (14)

In particular, as Q(1) =×i∈[k] Vi, it holds that EG[μ(1)] = 1.

In what follows we show that, for p = 1/2, the measure

is somewhat concentrated around the expected value. The

concentration, though, is far from enough to perform a union

bound over all rectangles to argue that the measure behaves

as expected on all rectangles simultaneously.
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We show that the measure concentrates by an application

of Chebyshev’s inequality. To this end we analyze the second

moment: for p = 1/2 we have

EG[μ
2
d(Q)] = n−2k

∑
H∈Hd

∑
t,t′∈Q

EG[χH(t)(G)χH(t′)(G)] (15)

= n−2k
∑

H∈Hd

∑
t,t′∈Q:

tV (E(H))=t′V (E(H))

EG[χH(t)(G)χH(t′)(G)] (16)

= n−2k
∑

H∈Hd

|{(t, t′) : tV (E(H)) = t′V (E(H))}| (17)

= n−2k
∑

H∈Hd

|QV (E(H))| · |Q[k]\V (E(H))|2 (18)

≤ n−k|Q|
(
1 +

∑
H∈Hd

H �=∅

n−|V (E(H))|
)

. (19)

A careful application of Lemma II.3 allows us to bound the

number of pattern graphs H we sum over in (19) to conclude

that E[μ2
d(Q)] = |Q|n−k

(
1± n−Ω(1)

)
, as long as k and d are

small. By virtue of Chebyshev’s inequality we then conclude

that μ(1) = 1± n−Ω(1) asymptotically almost surely.

A natural attempt to prove that the measure is mostly non-

negative is to analyze higher moments in the hope that these

are closely concentrated around the (positive) expected value.

The fundamental difficulty in analyzing the pseudo-measure

μd is that we have to analyze exponentially many rectangles

simultaneously. Since there is such a large number of rectangles,

for each input graph G, there will be some rectangles where

the value of μd differs considerably from the expected value.

For example, the measure on a rectangle Q with only a few

vertices Qi in some block Vi heavily depends on the behavior

of the edges incident to the vertices in Qi. Hence, if Qi is

small enough, we expect large deviations from the expected

value. A slightly simplified, though more concrete, example

of this phenomenon goes as follows: let v1 ∈ V1 and v2 ∈ V2,

let Q be the rectangle that consists of all tuples that contain

v1 as well as v2, and let H be the graph with the single edge

{1, 2}. In this setting the sum
∑

t∈Q χH(t)(G) heavily depends

on whether the edge {v1, v2} is present in G: if the edge is

present, then the sum is equal to nk−2 1−p
p and, if the edge is

not present, then it is equal to −nk−2. This indicates that on

some rectangles the measure heavily depends on a few edges

and we can thus not hope to naı̈vely prove concentration of

the measure over all rectangles.

This slightly simplified example can be generalized to show

that for a fixed H there is always a small number of rectangles

where the value contributed by H is much larger than expected.

Part of the technical challenge of the proof is to identify these

bad rectangles and to handle them separately.

C. Edge Axioms Should Have Small Measure

We now explain the main ideas for bounding the magnitude

of the measure of edge axioms. Recall that all other axioms

are mapped to 0 by μ and we are thus just left to show that

the value of the edge axioms is closely concentrated around 0.

For every pair of vertices {u, v} /∈ E(G) in distinct blocks

we have an edge axiom puv = xuxv stating that at least one of

xu and xv are set to 0. Let Q be a subrectangle of Q(puv). Note

that for every such rectangle Q there is a monomial m such

that Q = Q(m ·puv) and hence these are the correct rectangles

to consider if we want to prove Property 1 of Definition III.2.

In other words, if we manage to show for all such Q that

|μd(Q)| ≤ n−Ω(d), then it follows that for all monomials m it

holds that |μd(m · puv)| ≤ n−Ω(d), as wanted.

We first show that for a fixed pair of vertices {u, v} �∈ E(G),
with good probability, all such subrectangles Q have small

absolute measure. By a union bound over all missing edges

we then conclude that all subrectangles Q of an edge axiom

satisfy |μd(Q)| ≤ n−Ω(d). Let us fix an edge {u, v} /∈ E(G).

If Q is empty, then there is nothing to prove as μd(Q) is

trivially 0. Hence we may assume that Q is non-empty, that

is, Q has at least one vertex per block and hence each tuple

in Q contains both u and v. Let i �= j ∈ [k] such that u ∈ Vi

and v ∈ Vj . For e = {i, j} we may write

μd(Q) = n−k
∑
t∈Q

∑
H∈Hd

χH(t)(G) (20)

= n−k
∑
t∈Q

( ∑
H∈Hd

e/∈H

χH(t)(G) +
∑

H∈Hd
e∈H

χH(t)(G)
)

(21)

= n−k
∑
t∈Q

∑
H: vc(H)=d,

vc(H∪{e})=d+1

χH(t)(G) , (22)

where the last equality follows from the fact that every tuple

t ∈ Q contains u and v and thus, if e /∈ H , then χH(t)(G) =
−χH(t)(G) ·χ{u,v}(G) = −χ(H∪{e})(t)(G) as {u, v} �∈ E(G).

The naı̈ve approach to bounding |μd(Q)| is to try to bound

the magnitude of
∑

t∈Q χH(t)(G) for each H separately and

to then multiply this bound by the number of graphs H we

sum over. Recall from Lemma II.3 that there are about 2dk

graphs with a minimum vertex cover of size d.

Unfortunately the magnitude of
∑

t∈Q χH(t)(G) may simply

be too large: it can be of magnitude n−O(d)|Q|. In particular

for large Q this bound is insufficient

|μd(Q)| ≤ n−k
∑

H: vc(H)=d,
vc(H∪{e})=d+1

|Q|n−O(d) (23)

≤ 2dkn−O(d) = nΩ(dk/logn−d) , (24)

as k is much larger than both d and log n. Instead of bounding

each H separately, we bundle some graphs H together and

then proceed to bound the magnitude of the sum over each such

bundle. More precisely, we have families of graphs, indexed

by graphs F with at most 3d non-isolated vertices, of the form

H(F,E�
F )={H |E(H)=E(F ) ∪ E,whereE ⊆ E�

F } , (25)

that partition the set of graphs H satisfying vc(H) = d and

vc(H ∪ {e}) = d+ 1. Using these families we can bound the
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magnitude of μd(Q) by

|μd(Q)| = n−k
∣∣∣∑
t∈Q

∑
H: vc(H)=d,

vc(H∪{e})=d+1

χH(t)(G)
∣∣∣ (26)

≤ n−k
∑
F

∣∣∣∑
t∈Q

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣ (27)

= n−k
∑
F

∣∣∣∑
t∈Q

χF (t)(G)
∑

E⊆E�
F

χE(t)(G)
∣∣∣ . (28)

Observe that the innermost sum is, up to normalization, the

indicator function of whether the edge set E�
F (t) is present in

G. In fact the innermost sum, with the appropriate definition

of E�
F , is simply a statement about the common neighborhood

sizes of different subsets of t in G. We will need to argue that

for random graphs, with high probability, all such sets behave

as expected and the innermost sums are therefore bounded.

Furthermore, since each graph F has at most 3d with

incident edges, there are fewer such graphs: according to

Lemma II.3 at most 23d(d+log k). Since k ≤ n1/66 and

d ≤ 2η log n, for some small constant η, it holds that there

are at most 2d(d+log k) � nd/50 many such graphs F . Thus, an

upper bound of nk−Ω(d) on the absolute value of two innermost

sums in Equation (28) can now be used to obtain the claimed

bound |μd(Q)| ≤ n−Ω(d). This completes the proof sketch for

bounding the measure on edge axioms.

In Section IV we formally define these core graphs F and

the families H(F,E�
F ). In Section V we introduce the pseudo-

randomness property of graphs we rely on in order to bound

the two innermost sums in Equation (28). In Section VI-A we

formally prove that the measure on subrectangles of axioms is

bounded in absolute value. The verification that random graphs

indeed satisfy our notion of pseudorandomness can be found

in the full version.

D. Rectangles Should Be Approximately Non-Negative

To show that all rectangles Q have essentially non-negative

measure, the main idea is to decompose Q into a collection

Q of rectangles satisfying the following properties.

1) The collection Q is small, that is, |Q| ≤ nO(d).

2) Each rectangle Q ∈ Q is either

a) small: |Q|≤n(1−ε)k and hence |μd(Q)| is negligible,

b) a subrectangle of an axiom; |μd(Q)| is bounded, or

c) all common neighborhoods in Q are of expected

size and therefore μd(Q) ≈ |Q|/nk > 0.

In other words, Q contains some rectangles that have negligible

measure and a collection of larger rectangles on which the

measure behaves as expected. As the latter rectangles have

strictly positive measure we may conclude that our pseudo-

measure is essentially non-negative on all rectangles.

We bound the measure on small rectangles by summing the

maximum possible magnitude of any character appearing in

the definition of our pseudo measure.

Lemma III.4. Any rectangle Q satisfies |μd(Q)| ≤
O
(|Q|n−kkdp−dk

)
.

Proof. We bound μd(Q) by counting the number of pattern

graphs H we sum over multiplied by the maximum magnitude

of each such character. We have that

|μd(Q)| ≤ n−k
d∑

i=0

ik∑
j=i

∣∣∣∑
t∈Q

∑
H:

vc(H)=i
|E(H)|=j

χH(t)(G)
∣∣∣ (29)

≤ |Q|n−k
d∑

i=0

(
k

i

) ik∑
j=0

(
ik

j

)(1− p

p

)j

(30)

= |Q|n−k
d∑

i=0

(
k

i

)
1

pik
≤ O(|Q|n−kkdp−dk) , (31)

as claimed.

We implement the above proof outline in Section VI-B.

Proving that our pseudo-measure concentrates around a positive

value on rectangles as described in Item 2c is the most delicate

part of our proof. In fact, above proof outline is somewhat

inaccurate in that the value the pseudo-expectation concentrates

around is not simply |Q|/nk but further depends on the number

of small blocks in the rectangle Q. We refer to Definition VI.6

for the precise definition of these rectangles and to Lemma VI.7

for the claimed concentration inequality. We do not include

the proof of Lemma VI.7 in this extended abstract—it can be

found in the full-length version of this paper.

I V. C O R E S

In this section we introduce the notion of a core of a pattern

graph, which will be used extensively throughout the rest of

the paper. Our notion of a core seems to be loosely connected

to the notion of a vertex cover kernel as used in parameterized

complexity (see, e.g., the survey by Fellows et al. [26]).

A. Cores and Boundaries

Recall that when bounding the measure of subrectangles of

axioms Ae, we were left with sums over graphs H such that

vc(H) = d and vc(H∪{e}) = d+1 (see Equation (22)). Such

graphs motivate the following definition of sets of graphs in

the boundary of an edge.

Definition IV.1 (boundary). Let i ∈ N, H be a graph and

e ∈ (
V (H)

2

)
be an edge. The graph H is in the (i, e)-boundary,

denoted by Hi(e), if and only if vc(H) = i and vc(H∪{e}) =
i+ 1. Furthermore, we say that H is in the e-boundary if and

only if H is in an (i, e)-boundary for some i ∈ N.

As mentioned in the proof sketch bounding the edge axioms,

we cannot bound each H in the e-boundary separately (there

are too many pattern graphs H) so we partition such graphs

according to cores as explained below.

Definition IV.2 (core). A vertex induced subgraph F of H
is a core if any minimum vertex cover of F is also a vertex

cover of H .

The notions of cores and (i, e)-boundaries interact nicely in

the following sense.
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Proposition IV.3. A core of a graph H is in the (i, e)-boundary
if and only if H is.

Proof. Let F be a core of H . We first argue that if a core F of

the graph H is in the (i, e)-boundary, then so is H . Indeed, by

definition it holds that vc(F ) = vc(H) = i. Moreover, F being

in the (i, e)-boundary implies that the minimum vertex cover

of F ∪ {e} has size i+ 1, and therefore the minimum vertex

cover of H ∪ {e} must also be i + 1 since F is a subgraph

of H .

It remains to argue that if H is in the (i, e)-boundary, then

so is the core F . By definition of core, vc(F ) = vc(H) = i.
Suppose, for the sake of contradiction, that F is not in the

(i, e)-boundary and thus vc(F∪{e}) = i. Let W be a minimum-

sized vertex cover of F ∪ {e}. Since |W | = i, it holds that

W is also a minimum-sized vertex cover of F and thus, by

definition of core, W is also a vertex cover of H . But this

contradicts the assumption that H is in the (i, e)-boundary

since W also covers the edge e and hence is a vertex cover

of size i of H ∪ {e}.

Recall that H is the set of graphs on k labeled vertices.

We consider a map core from H to small cores that satisfies

certain properties as described in the lemma below.

Lemma IV.4. There is a map core that maps graphs H ∈ H to
a core of H with the following properties. For every graph F in
the image of core we have that |V (E(F ))| ≤ 3·vc(F ) and that
there exists an edge set E�

F ⊆ V
(
E(F )

)× (
[k] \ V (

E(F )
))

such that core(H) = F if and only if E(H) = E(F ) ∪ E for
E ⊆ E�

F .

From now on we only consider the cores given by the map

core as in Lemma IV.4. With a slight abuse of nomenclature

we say that core(H) is the core of H . Note that for a graph F
in the image of core we have that core−1(F ) = H(F,E�

F ) =
{H | E(H) = E(F ) ∪ E, for E ⊆ E�

F }, as introduced in

Section III-C.

We refer to the full paper for the proof of Lemma IV.4. In

the following we sketch the construction of a core for intuition

without proving that it satisfies the stated properties. Given a

graph H with lexicographic minimum vertex cover W we let

U1 be the lex first maximal set of vertices with a matching

from U1 to W that covers all vertices in U1. Similarly we let

U2 be the lex first maximal set of vertices in H \ U1 with a

matching from U2 to W covering all vertices in U2 to define

core(H) = H[D ∪ U1 ∪ U2]. An illustration can be found in

Figure 2.

V. W E L L - B E H AV E D G R A P H S

In this section, we define the notion of well-behaved graphs,

which is based on two combinatorial properties of graphs

related to common neighborhoods of small tuples, and two

analytic properties that bound certain character sums. In the

following sections we prove that our measure satisfies the

required conditions to obtain our unary Sherali-Adams lower

bound for any well-behaved graph.

U2 U1W

Figure 2. A candidate core with edges in M1 and M2 highlighted

Let us start by introducing the concepts needed to define well-

behaved graphs. We say a rectangle Q is s-small if |Qi| ≤ s
for all i ∈ [k] and, given a set A ⊆ [k], a rectangle Q is said

to be (s,A)-large if |Qi| > s for all i ∈ A. For any set D we

say that a function f : D → R
+ is r-bounded if f(x) ≤ r for

all x ∈ D.

We require some terminology and notation from graph theory.

The neighborhood of a vertex v ∈ V in a graph G = (V,E)
is N(v) = NG(v) = {u | {u, v} ∈ E} and the neighborhood

of a set of vertices U ⊆ V is N(U) = NG(U) = {v �∈ U |
∃u ∈ U : {u, v} ∈ E}. For a set W ⊆ V the neighborhood of

a vertex v in W is N(v,W ) = N(v) ∩W and similarly for

a set U we let the neighborhood of U in W be N(U,W ) =
N(U) ∩ W . The common neighborhood of U is N∩(U) =⋂

u∈U N(u) and the common neighborhood of U in W is

N∩(U,W ) = N∩(U)∩W . This notation is naturally extended

to a tuple t by considering t as a set of vertices.

The next two definitions are purely combinatorial. They are

similar to definitions that have appeared in previous papers

on k-clique [11], [15], [17]. Recall that throughout the paper

graphs denoted by G are k-partite with partitions V1, . . . , Vk

of size n each.

Definition V.1 (bounded common neighborhoods). A graph

G has (β, p)-bounded common neighborhoods from Q =×i∈A Qi to R ⊆ V (G) if it holds that for all B ⊆ A and all

t ∈ QB

|N∩(t, R)| ∈ (1± β)p|t||R| .

A graph G has (β, p, d)-bounded common neighborhoods in
every block if for all A ⊆ [k] of size at most d and all i ∈ [k]\A,

G has (β, p)-bounded common neighborhoods from VA to Vi.

While it turns out that random graphs do have bounded

common neighborhoods, the graph induced by a rectangle may

certainly have tuples with ill-behaved common neighborhoods:

we may for example have an isolated vertex in a rectangle.

The following definition roughly states that, while there

may be tuples with ill-behaved neighborhoods in a rectangle,

there is a large sub-rectangle which has bounded common

neighborhoods.
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Definition V.2 (bounded error sets). A graph G has

(s, w, β, p, d)-bounded error sets if for all rectangles Q =×i∈[k] Qi satisfying |Qi| ≥ s or |Qi| = 0 it holds that there

exists a small set of vertices W ⊆ V (G), |W | ≤ w, such

that for all S ⊆ [k] of size at most d it holds that all tuples

t ∈×i∈S(Qi \W ) satisfy∣∣N∩(t, Qj \W )
∣∣ ∈ (1± β)p|t|

∣∣Qj \W
∣∣

for all j ∈ [k] \ S. We refer to W as the error set of Q.

Recall from the edge axiom proof sketch in Section III-C

that we require bounds of the form nk−Ω(vc(F )) on the absolute

value of certain character sums. It turns out that, in order to

prove that monomials are mapped to an essentially non-negative

value, we need tighter (depending on |Q|) as well as “localized”

versions of these bounds. For conciseness we introduce the

following terminology.

Definition V.3 (bounded character sums). Let s ∈ N
+, B ⊆ [k],

QB =×i∈B Qi and F be a core graph. A graph G has s-
bounded character sums over QB for F if it holds that∣∣∣ ∑

t∈QB

∑
H∈H(F,E�

F [B])

χH[B](t)(G)
∣∣∣ ≤ s .

We are now ready to state the pseudorandomness property

of graphs that allows us to prove average-case unary Sherali-

Adams lower bounds for the k-clique formula. As Properties 3

and 4 are somewhat difficult to parse we give an informal

description upfront.

Property 3 states that all character sums over the families

H(F,E�
F ) are of bounded magnitude if the rectangle con-

sidered has large minimum block size. Smaller rectangles

are unfortunately not as well-behaved. However, for certain

rectangles, we can guarantee something similar: Property 4

states that if the common neighborhood of small tuples in a

rectangle are bounded, then the mentioned character sums can

still be bounded.

First time readers may, for now, choose to skip the formal

definition of Property 4. It might be more insightful to first

read Section VI and return Property 4 once it is used.

Definition V.4 (well-behaved graph). We say that a k-partite

graph G with partitions of size n is D-well-behaved if, for

p = n−2/D, the following properties hold:

1) G has (1/k, p,D/4)-bounded common neighborhoods

in every block.

2) There exists a constant C ∈ R
+ such that G has

(2s, s, 1/k, p, �)-bounded error sets for all � ≤ D/4 and

s ≥ Ck4� lnn/p2�.
3) For any core F with vc(F ) ≤ D/4 and any(

n/2, V
(
E(F )

))
-large rectangle Q it holds that G has

s-bounded character sums over Q[n] for F , where

s = 6 · p−|E(F )| · nk−λ vc(F )/4 ,

for any λ < 1− log(k)/ log(n).
4) For any Λ ≥ 20 k log n, any core F with vc(F ) ≤ D/4,

any B ⊆ [k] and any (4Λ)-small rectangle Q that is also

(Λ, B)-large the following holds for A = V
(
E(F )

)∩B.

If G has (3/k, p)-bounded common neighborhoods from

QA to Qi, for every i ∈ B \ A, then G has s-bounded

character sums over QB for F , where

s = O
(
p−|E(F [B])| · (Λ/10 k log n)− vc(F [B])/4 · |QB |

)
.

In what follows we often state that a graph G is D-well-

behaved in which case it is implicitly understood that G is

k-partite with partitions of size n. In the full-length version

of this paper, we prove that a graph G, sampled from the

distribution G(n, k, n−2/D), is asymptotically almost surely

D-well-behaved, as stated next.

Theorem V.5. If n is a large enough integer, k ∈ N
+ and

D ∈ R
+ satisfy 4 ≤ D ≤ 2 logn and k ≤ n1/5, then

G ∼ G(n, k, n−2/D) is asymptotically almost surely D-well-
behaved.

V I . C L I Q U E I S H A R D O N W E L L - B E H AV E D G R A P H S

In this section we prove that our measure μd is an n−Ω(D)-

pseudo-measure for the k-clique formula, if the formula is

defined over a D-well-behaved graph G.

Theorem VI.1. There are constants η, c > 0 and D0 ∈ N

such that the following holds for large enough n ∈ N and all
D satisfying D0 < D ≤ 2 logn. If D ≤ k ≤ n1/66, d = ηD
and G is a D-well-behaved k-partite graph with n vertices
per block, then the measure μd is an n−cD-pseudo-measure
for the k-clique formula over G and, furthermore, satisfies
μd(1) ≥ 1− n−Ω(1).

From Theorem V.5 and Theorem VI.1 along with Proposi-

tion III.3 we obtain Theorem III.1.
In order to prove that the measure μd satisfies the prop-

erties of a pseudo-measure as listed in Definition III.2, we

show that μd maps any axiom multiplied by a monomial

to approximately 0 and that all monomials are associated

with an essentially non-negative value. Finally, we argue that

μd(1) ≥ 1− n−Ω(1).
For all axioms except the edge axioms, it is easy to see that

μd maps the axiom times any monomial not only to approxi-

mately 0 but to precisely 0. Indeed, by definition of μd, for any

monomial m and variable x, we have μd

(
m(1− x̄− x)

)
= 0

and μd

(
m(x2 − x)

)
= 0. Similarly we may observe that

μd

(
m(

∑
v∈Vi

xv −1)
)
= 0 by linearity of μ over tuples. With

regards to bounding the measure on axioms we are left to prove

that for any edge axioms puv = xuxv and any monomial m
it holds |μd(mpuv)| ≤ n−cD. The following lemma states

a slightly more precise bound which we use when proving

Lemma VI.3.

Lemma VI.2. Let G be a D-well-behaved graph, let n be
a large enough integer and let d = ηD ≤ 2η log n for some
constant η > 0. It holds that all edge axioms puv and all rectan-
gles Q ⊆ Q(puv) satisfy |μd(Q)| ≤ O

((
nλ/4−12η/(2k)3

)−d)
for any λ < 1− log(k)/ log(n).

Note that by choosing λ = 1/2, and considering k ≤ n1/66

and η > 0 small enough, Lemma VI.2 implies that any
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subrectangle of an edge axiom satisfies |μd(Q)| ≤ n−cD

for some small enough constant c. We postpone the proof

of Lemma VI.2 to Section VI-A.

In addition to the bound on the magnitude of the measure on

the axioms we also need to prove that the measure is essentially

non-negative. We state this formally below and defer the proof

to Section VI-B.

Lemma VI.3. There are constants η, c > 0 such that if G is a
D-well-behaved graph, n is large enough, d = ηD ≤ 2η log n
and D ≤ k ≤ n1/66, then any rectangle Q satisfies μd(Q) ≥
−n−cD.

In Section III-B we argued that, with high probability, μd(1)
is approximately 1 if G is a random graph. In what follows

we show that this holds for any D-well-behaved graph.

Lemma VI.4. There are constants η, c > 0 such that for n
large enough, k ≤ n1/20, D ≤ 2 log n and d = ηD it holds
that if G is a D-well-behaved graph, then μd(1) ≥ 1− n−c.

Proof. This is a direct consequence of the definition of a D-

well behaved graph and Lemma IV.4. Recall the map core
from Lemma IV.4 and the families

H(F,E�
F )={H |E(H)=E(F ) ∪ E,whereE ⊆ E�

F } , (32)

defined for core graphs F ∈ img(core) which satisfy vc(F ) ≤
d. From Property 3 of Definition V.4, choosing λ = 4/5, it

follows that for every F img(core) we have

n−k
∣∣∣ ∑
t∈Q(1)

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣ ≤ n− vc(F )/6 , (33)

where we use the bound p−|E(F )| ≤ p−3d vc(F ) ≤ n6η vc(F )

and the fact that η is a small enough constant. As the families

defined in Equation (32) partition the set of graphs H of vertex

cover at most d, using the bound from Equation (33), it holds

that

μd(1) = 1+n−k
∑

H∈Hd

H �=∅

∑
t∈Q(1)

χH(t)(G) (34)

≥ 1−n−k
d∑

i=1

∑
F∈img(core)

vc(F )=i

∣∣∣∑
t∈Q(1)

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣ (35)

≥ 1−
d∑

i=1

23i(d+log k)n−i/6 (36)

≥ 1− n−c , (37)

for some constant c > 0. In above inequalities we relied on

Lemma II.3 for an upper bound on the number of cores in

img(core) with vertex cover of size i, on the fact that d ≤
2η log n, that η is a small enough constant and that k ≤ n1/20.

This completes the proof of Lemma VI.4.

This completes the proof of Theorem VI.1 modulo

Lemma VI.2 and Lemma VI.3, which we prove in Section VI-A

and Section VI-B, respectively.

A. Axioms Have Small Measure

In this section, we show that, with high probability, any

subrectangle of an edge axiom has small measure in absolute

value. We rely on the following technical lemma.

Lemma VI.5. If G is a D-well-behaved graph, then for any
core graph F and any rectangle Q, we have that∣∣∣∑

t∈Q

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣ ≤ 6 · 2|A|p−|E(F )|nk−λ vc(F )/4 ,

where A = V
(
E(F )

)
and λ < 1− log(k)/ log(n).

Proof. Let F be a core graph, let A = V
(
E(F )

)
and s =

6 · p−|E(F )| ·nk−λ vc(F )/4. By Property 3 of Definition V.4 we

have that if Q is (n/2, A)-large (i.e., if Q satisfies |Qi| ≥ n/2
for all i ∈ A), then

∣∣∑
t∈Q

∑
H∈H(F,E�

F ) χH(t)(G)
∣∣ ≤ s.

Given any rectangle Q (not necessarily (n/2, A)-large), let

T ⊆ A be the set of blocks of Q such that |Qi| < n/2. By a

simple inclusion-exclusion argument, we have that

Q =
∑
S⊆T

(−1)|S|
(×
i∈S

(Vi \Qi)
)×(×

i∈T\S
Vi

)×(×
i∈[k]\T

Qi

)
. (38)

For S ⊆ T , denote by QS the rectangle
(×i∈S(Vi \Qi)

)×(×i∈T\S Vi

) × (×i∈[k]\T Qi

)
. Note that QS is (n/2, A)-

large and therefore, by Property 3 of Definition V.4, G has

s-bounded character sums over QS for F . This implies that∣∣∣∑
t∈Q

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣

≤
∑
S⊆T

∣∣∣ ∑
t∈QS

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣ ≤ 2|A| · s ,

(39)

as claimed.

We are now ready to prove Lemma VI.2.

Proof of Lemma VI.2. Fix an edge {u, v} /∈ E(G), let i, j ∈
[k] such that u ∈ Vi and v ∈ Vj , consider the edge axiom

puv = xuxv and let Q ⊆ Q(puv) be an arbitrary subrectangle

of this edge axiom. Recall from Section III-C that every tuple

t ∈ Q contains the vertices u and v and thus, for e = {i, j},

we may write

μd(Q) = n−k
∑
t∈Q

∑
H∈Hd

χH(t)(G) (40)

= n−k
∑
t∈Q

∑
Hd(e)

χH(t)(G) , (41)

where Hd(e), as defined in Section IV, denotes the set of graphs

in the (d, e)-boundary. Let the map core be as guaranteed by

Lemma IV.4. Recall that, according to Proposition IV.3, the

graph core(H) is in Hd(e) if and only if H is. Hence the sets

{core−1(F )=H(F,E�
F ) | F ∈Hd(e) ∧ F ∈ img(core)} (42)
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R

s

Q

Figure 3. The rectangle Q is a good rectangles as the vertices in R have
all vertices as neighbors, the blocks outside R are large and small tuples on
these blocks have common neighborhoods of expected size

partition the (d, e)-boundary Hd(e) and we may thus write

|μd(Q)| =
∣∣∣n−k

∑
t∈Q

∑
H∈Hd(e)

χH(t)(G)
∣∣∣ (43)

=
∣∣∣n−k

∑
F∈Hd(e)

F∈img(core)

∑
t∈Q

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣ (44)

≤ n−k
∑

F∈Hd(e)
F∈img(core)

∣∣∣∑
t∈Q

∑
H∈H(F,E�

F )

χH(t)(G)
∣∣∣ . (45)

By Lemma VI.5 each inner part can be bounded by 6 ·2|A| ·
p−|E(F )| ·nk−λ vc(F )/4. Note that vc(F ) = d and, according to

Lemma IV.4, it holds that |A| ≤ 3d and p−|E(F )| ≤ p−3d2

=
n6ηd, using the assumption that d ≤ 2η log n. Hence

|μd(Q)| ≤
∑

F∈Hd(e)
F∈img(core)

6 · 23d · n−d(λ/4−6η) (46)

≤ 23d(d+log k) · 6 · 23d · n−d(λ/4−6η) (47)

≤ 6 · (nλ/4−12η/(2k)3
)−d

, (48)

where we used Lemma II.3 to bound the number of core graphs

and the assumption d ≤ 2η log n. This concludes the proof of

Lemma VI.2.

B. All Rectangles Are Approximately Non-Negative

Before defining good rectangles formally, let us give an

informal description. A good rectangle Q consists of two parts.

The first part is very small: on a few blocks the rectangle Q
only consists of single vertices. Each vertex in this small part

is adjacent to all other vertices in Q. Equivalently, on this

small part we have a clique and the remaining vertices in Q
are in the common neighborhood of this clique.

On the other blocks, where Q does not consist of a single

vertex, we require that these blocks are large, of size at least

s = poly(n). In addition we also require that all common

neighborhoods are bounded on this large part. An illustration

of a good rectangle can be found in Figure 3. The formal

definition follows.

Definition VI.6 (good rectangle). Let G be a k-partite

graph and let s, β, p, d ∈ R
+ and R ⊆ [k]. A rectangle

Q =×i∈[k] Qi is (s, β, p, d,R)-good for G if it satisfies the

following properties.

1) If i ∈ R, then Qi = {vi}; otherwise |Qi| ≥ s.

2) For all i ∈ R it holds that N(vi) ⊇
⋃

j �=i Qj .

3) For all S ⊆ [k]\R of size at most d and for all i �∈ R∪S,

G has (β, p)-bounded common neighborhoods from QS

to Qi.

On good rectangles the measure is tightly concentrated

around the expected value. In the full-length version of the

present paper we prove the following concentration bound.

Lemma VI.7. For constants ε > 0 and η < 1/25, for n, k, d ∈
N and p = n−2/D ≤ 1/2 satisfying d ≤ ηD and D ≤ k ≤ n
the following holds. If s ≥ k13n48η+ε log n and G is a D-
well-behaved graph, then any (s, 1/k, p, d,R)-good rectangle
Q for G with |R| = � < d satisfies

μd(Q) = p−�(k−(�+1)/2) |Q|n−k
(
1±O(n−ε/8)

)
.

In the remainder of this section we prove Lemma VI.3,

assuming Lemma VI.7. As outlined in Section III-D, we

intend to decompose any rectangle Q into a small family Q
of rectangles such that each rectangle in Q either contains

few tuples, is a subrectangle of an edge axiom or is a good

rectangle. The following lemma summarizes our claim.

Lemma VI.8. Let G be a D-well-behaved graph, let p =
n−2/D, d ≤ D/4 and s ≥ Ck4d lnn/p2d for some large
enough constant C. Then any rectangle Q0 can be partitioned
into a set of rectangles Q of size |Q| ≤ 2kn(2s)d such that
each Q ∈ Q satisfies that either

1) Q is small: |Q| ≤ O
(
(n · pd)k−d

)
,

2) Q is a subrectangle of an edge axiom, or
3) Q is (s, 1/k, p, d,R)-good for G, where R ⊆ [k] satisfies

|R| < d.

Before proving Lemma VI.8, let us show how Lemma VI.3

follows. The idea of the proof is to apply Lemma VI.8 to a

given rectangle Q0 to obtain a collection Q of rectangles. It

holds that μd(Q0) =
∑

Q∈Q μd(Q). By Lemma III.4 there

is a δ > 0 such that all small rectangles Q ∈ Q satisfy

|μd(Q)| ≤ n−δD and similarly by Lemma VI.2 the same holds

for Q ∈ Q that are a subrectangle of an edge axiom. Further,

by our choice of parameters, the size of Q is small—we may

think of it as nδD/2. We can thus lower bound

μd(Q0) =
∑
Q∈Q

μd(Q) ≥ −n−δD/2 +
∑
Q∈Q

Q is good

μd(Q) . (49)

Lemma VI.7 states that the remaining good rectangles in above

sum have strictly positive value. Thus μd(Q0) ≥ −n−δD/2 as

claimed. In what follows we verify that this indeed holds for

our choice of parameters.

Proof of Lemma VI.3. Let Q0 be any rectangle. Our goal is to

show that μd(Q0) ≥ −n−cD, for a sufficiently small constant c.

Let D ≤ k ≤ n1/66 be as in the statement of the lemma

and choose λ = 1− ε− log(k)/ log(n) for sufficiently small

constants ε > 0 and η > 0 such that for s = k13n48η+ε log n
it holds that s ≤ nλ/4−12η−ε/k3. Let d = ηD ≤ 2η log n and

p = n−2/D. Note that for our choice of parameters it holds
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that s = ω(k4n4η log2 n), hence s = ω(k4d lnn/p2d), and we

may thus apply Lemma VI.8 with d = ηD to the rectangle Q0

to obtain a family Q of size at most |Q| ≤ 2kn(2s)d.

By Lemma VI.2, any subrectangle of an axiom has measure

bounded by O
((
nλ/4−12η/(2k)3

)−d)
. Moreover, according to

Lemma III.4 each small rectangle Q ∈ Q has measure of

magnitude at most

|μd(Q)| ≤ O
(|Q|n−kkdp−dk

)
= O(n−d/2) , (50)

which is even smaller than the bound on axioms. Since s ≤
nλ/4−12η−ε/k3, we conclude that the measure of all small

rectangles and all subrectangles of axioms in Q add up, in

magnitude, to at most |Q| ·O((
nλ/4−12η/(2k)3

)−d) ≤ n−cD,

for a small enough constant c.
Hence the measure of Q0 is mostly on the good rectangles

of Q and on these rectangles we know that it is closely

concentrated around a strictly positive value. Indeed, we can

apply Lemma VI.7 to any rectangle Q which is (s, 1/k, p, d,R)-
good for G to conclude that

μd(Q) = p−�(k−(�+1)/2) |Q|n−k
(
1±O(n−ε/8)

)
> 0 .

Let us proceed to prove Lemma VI.8.

Proof of Lemma VI.8. Let us describe a recursive decompo-

sition procedure that can be applied to any rectangle Q =×i∈[k] Qi.

If either Q is small, a subrectangle of an axiom or

(s, 1/k, p, d,R)-good for some R ⊆ [k], then return Q.

Otherwise decompose in the following recursive fashion.

1) If there is a singleton Qi = {vi} such that N(vi) �⊇⋃
j �=i Qj , then we decompose Q into |Q \ N(vi)| + 1

many rectangles as follows. Denote by u1, u2, . . . , um

the vertices in Q that are not a neighbor of vi and assume

that they are in blocks j1, j2, . . . , jm. For ν = 1, . . . ,m
we remove all tuples that contain the vertex uν : let R0 =
Q so we can write

Qν = {uν} ××
j �=jν

Rν−1
j and

Rν =
(
Rν−1

jν
\ uν

)××
j �=jν

Rν−1
j .

(51)

Note that the rectangles Q1, . . . , Qm, Rm partition Q.

Add the Qν to the partition as these are subrectangles

of edge axioms and recursively decompose Rm.

2) If there is a block i ∈ [k] of size 1 < |Qi| ≤ 2s, then

split Q into the |Qi| rectangles{{vi} ××
j �=i

Qj : vi ∈ Qi

}
(52)

and recursively decompose each of these rectangles.

3) Let A be the set of blocks of size greater than 2s. Because

G is D-well-behaved, by Property 2 of Definition V.4,

it holds that G has (2s, s, 1/k, p, d)-bounded error sets.

In particular QA has an error set U = {u1, . . . , um}
of size at most s. Decompose Q into Q1, . . . , Qm and

Rm as in Case 1. By definition the rectangle Rm

is (s, 1/k, p, d, [k] \ A)-good and we may thus add it

to the partition. Recursively decompose the rectangles

Q1, . . . , Qm.

This completes the description of the decomposition pro-

cedure. We need to argue that the decomposition Q created

by above procedure is not too large, that is, of size |Q| ≤
2kn · (2s)d. Let us start with a few observations.

Because G is D-well-behaved it holds that G has

(1/k, p,D/4)-bounded common neighborhoods in every block

(see Property 1 of Definition V.4). Let Q be a rectangle with

d blocks of size 1 and with the remaining vertices contained

in the common neighborhood of these singletons. All such

rectangles Q are small. Thus the decomposition procedure

does not need to decompose such rectangles Q any further.

Whenever we decompose a rectangle in Cases 2 and 3

all rectangles that we need to recursively decompose have

one more singleton. Because we can stop decomposing after

identifying d singletons and in Cases 2 and 3 we create at

most 2s many rectangles that require further decomposition we

end up with at most 2(2s)d many rectangles. We ignored the

rectangles from Case 1 so far. But each rectangle that requires

further decomposition from Cases 2 and 3 results in at most

another kn many rectangles from Case 1. Thus the size of the

family of rectangles is bounded by 2kn · (2s)d.

V I I . C O N C L U D I N G R E M A R K S

For k ≤ n1/100 we prove an essentially tight average-case

nΩ(D) size lower bound on unary Sherali-Adams refutations

of the k-clique formula for Erdős-Rényi random graphs with

maximum clique of size D. In fact, we obtain a lower bound

on the sum of the magnitude of the coefficients appearing in

a (general) Sherali-Adams refutation. The obvious problem

left open is to prove an nΩ(D) monomial size lower bound on

Sherali-Adams refutations of the clique formula.

One possible avenue to prove such a monomial size lower

bound is to argue that any Sherali-Adams proof of the clique

formula can be converted into a proof of the same monomial

size but with small coefficients. In fact, a slightly weaker

statement would suffice: recall that our lower bound only

counts the size of the coefficients of generalized monomials

as well as of monomials multiplied by edge axioms. As such

we would just need to be able to convert a general Sherali-

Adams refutation into a refutation with low coefficients for

such monomials.

In contrast to previous lower bounds for clique, our proof

strategy is not purely combinatorial. It might be fruitful to

obtain an explicit combinatorial description of μd—we believe

this could potentially be used to prove average-case clique

lower bounds for other proof systems, including resolution.

A strength of our lower bound approach is that it is quite

oblivious to the encoding: one can introduce all possible

extension variables depending on a single block and the lower

bound argument still goes through. This is because the only

property we require of a monomial m is that the set of tuples

Qm = {t | ρt(m) �= 0} whose associated assignment ρt sets

m to non-zero is a rectangle. By extending ρ in the natural
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manner to extension variables it is easy to see that Qm is still

a rectangle.

Our lower bound strategy seems to fail quite spectacularly

once the edge probability is increased well beyond 1/2. More

precisely, once D = ω(log n), we fail to counter exponential

in d2 factors that arise from encoding the core graphs: as long

as D = O(log n) we can counter these with s−d terms, where

s is the minimum block size of a good rectangle. As s is

clearly bounded by the block size n, this approach fails once

D = ω(log n). We leave it as an open problem to extend our

result to the dense setting.

We rely on rather unorthodox pseudorandomness properties

of the underlying graph. It is natural to wonder whether

these properties follow from a previously studied notion of

pseudorandomness. Furthermore, it is wide open whether our

lower bound can be made explicit. In particular, we have not

investigated whether graphs that satisfy our pseudorandomness

property can be constructed deterministically.

Another application of our pseudo-measure μd is in commu-

nication complexity. Suppose we consider the k-player number-

in-hand model, where player i obtains a single node ui from

block Vi. The goal of the k players is to find an edge missing

in the induced subgraph by the tuple (u1, . . . , uk). Consider

the leaves of such a communication protocol. Note that each

leaf � is associated with a subrectangle Q� of an edge axiom.

As the family of these associated rectangles Q� partition the

whole space, but |μd(Q�)| ≤ n−Ω(D), there must be at least

nΩ(D) leaves.

Finally, we have not investigated whether our technique

can be used to obtain lower bounds for other proof systems.

For example, is it possible that with similar ideas one could

obtain tree-like cutting planes lower bounds with bounded

coefficients? Possibly even with unbounded coefficients? The

communication complexity view of the problem suggests that

this may be a viable approach.
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[3] J. Håstad, “Clique is hard to approximate within n1−ε,” Acta Mathe-
matica, vol. 182, pp. 105–142, 1999, preliminary version in FOCS ’96.

[4] D. Zuckerman, “Linear degree extractors and the inapproximability of
max clique and chromatic number,” Theory of Computing, vol. 3, no. 6,
pp. 103–128, Aug. 2007, preliminary version in STOC ’06.
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